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The default network of the human brain is
associated with perceived social isolation
R. Nathan Spreng 1,2,3,4✉, Emile Dimas5, Laetitia Mwilambwe-Tshilobo1, Alain Dagher 4,

Philipp Koellinger 6, Gideon Nave 7, Anthony Ong8,9, Julius M. Kernbach10, Thomas V. Wiecki11,

Tian Ge12,13,14,15, Yue Li 16, Avram J. Holmes 17, B. T. Thomas Yeo18, Gary R. Turner19,

Robin I. M. Dunbar 20 & Danilo Bzdok 4,5,16,21✉

Humans survive and thrive through social exchange. Yet, social dependency also comes at a

cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive

performance, overall life expectancy, and increases vulnerability to Alzheimer’s disease-

related dementias. Despite severe consequences on behavior and health, the neural basis of

loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort (n=
~40,000, aged 40–69 years when recruited, mean age = 54.9), we test for signatures of

loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract micro-

structure. The loneliness-linked neurobiological profiles converge on a collection of brain

regions known as the ‘default network’. This higher associative network shows more con-

sistent loneliness associations in grey matter volume than other cortical brain networks.

Lonely individuals display stronger functional communication in the default network, and

greater microstructural integrity of its fornix pathway. The findings fit with the possibility that

the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination

to fill the social void.
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Human evolution has been shaped by selection pressures
towards enhanced inter-individual cooperation1,2. Social
interactions are crucial for survival, and fulfillment3.

Our species’ extraordinary reliance on other individuals has led to
the characterization of humans as the “ultra-social animal”2.
Consequently, the absence of sufficient social engagement can
impose substantial physical and psychological costs. A key con-
cern is the experience of ‘loneliness’: the subjective perception of
social isolation, or the discrepancy between one’s desired and
perceived levels of social connection4,5. In the present study, we
focus on the time-enduring, rather than momentary, nature of
this negative sense of an unmet social need, which we henceforth
refer to as ‘trait loneliness’. This concept is distinct from the
amount of time spent alone6 or the frequency of social contact4.
One may have few social contacts yet not feel lonely, and vice
versa. While there is growing evidence that social connectedness
may be associated with brain structure and function7–9 (and see
Bzdok and Dunbar10 for a review), in the current report we
directly investigate the neural correlates linked to trait loneliness,
that is, the negative subjective experience of social isolation.

Loneliness is estimated to affect 10–20% of adults who lack
companionship, consider themselves left out or isolated from
others11. The health burden of loneliness is pervasive. Loneliness
is closely related to morbidity, hypertension, and immune system
dysfunction12,13 as well as increasing risk for suicide11,14. A sense
of loneliness has also been associated with health risks that are
equivalent to or exceed that of obesity or smoking 15 cigarettes
daily15. Lonely individuals typically have poorer mental health,
higher susceptibility to major psychiatric disorders11 and cogni-
tive decline16,17, as well as greater neuropathological load with an
increased risk of dementia18–20. Lonely older adults are 1.64 times
more likely to develop clinical dementia than persons who do not
self-report as lonely, after accounting for various factors including
anxiety and depression17.

Given its central role in everyday life, loneliness is likely
associated with specific burdens on the brain. Most salient
manifestations, we argue, should be expected in brain regions that
underwent evolutionary expansion in response to species-specific
selection pressures for sociality1,21. However, animal studies have
so far emphasized differences in subcortical reward systems
associated with social isolation22. Human studies of loneliness
have also observed dampened reward signaling in mesolimbic
systems to social cues23,24. Research in humans is commonly
grounded in the perceptual and attentional sequelae of loneliness.
Lonely humans show greater vigilance for, and more rapid
detection of, negative social information22. Its cognitive and
affective characteristics also include heightened emotional reac-
tivity to social stimuli, often in the context of reduced cognitive
control25,26. Accordingly, brain differences related to the experi-
ence of loneliness have been reported in visual cortices, as well as
visual attention networks, limbic structures, and prefrontal cor-
tex27–31.

Social exchange among humans also encompasses more
advanced neurocognitive processes necessary to contemplate
one’s thoughts, as well as beliefs and intentions of a social agent.
These more complex capacities are necessary for social abilities,
such as imagining another’s perspective to hypothesize about
social events and interaction partners. Higher-order social abil-
ities are preferentially associated with a collection of brain regions
including medial prefrontal and medial temporal lobes, the
temporoparietal junction and posteromedial parietal cortex.
Collectively, these regions are thought to form a core of the
human ‘social brain’32–34. These higher-level social brain regions
appear to be neglected in the few existing human neuroscience
studies on loneliness that highlight lower visual, affective, and
attentional circuits. This circumstance is at odds with the

common view that recently evolved association cortices are inti-
mately related to reflecting social relationships; and should
therefore play a key role in the experience of trait loneliness.

We therefore conducted a systematic assessment of how trait
loneliness is manifested in the human brain. Some research has
hinted at the existence of a “lonely brain”. Existing studies,
however, have relied on a single modality of brain imaging (e.g.
structural, functional, or diffusion magnetic resonance imaging
[MRI]) and in-laboratory recruitment with limited sample sizes.
Here we report the findings of a multi-modal population neu-
roscience investigation to characterize the structural and func-
tional features of the “lonely brain” in concert. In the UK Biobank
imaging-genetics cohort (n= ~40,000), we probed gray matter
morphology, intrinsic functional connectivity, and white matter
tract microstructure to identify a neural signature that differ-
entiates lonely from non-lonely individuals. Further, the present
work follows our recent report of sex differentiation in brain
volume linked to the regularity of social contact35. Building on
these recent observations, we also investigated putative sex-
specific associations in the context of loneliness across these three
assays of brain structure and function.

Results
Our investigation centered on the binary classification measure
of loneliness collected as part of the UK Biobank initiative (data
field 2020, “Do you often feel lonely”). 13.1% of participants
included in our sample responded ‘yes’ to this questionnaire item
(men 38.63%, women 61.37%), consistent with prevalence esti-
mates for loneliness reported in other European population
cohort studies11. Demographic characteristics for lonely versus
non-lonely individuals are provided in Supplementary Table 1.
As a preparatory check, we ascertained the biological mean-
ingfulness of trait loneliness as captured in the UK Biobank initia-
tive. Our sample size makes it possible to use LD score regression for
direct estimates of shared genetic factors between loneliness and
another phenotype of interest (v1.0.0, Bulik-Sullivan et al.36). The
genome-wide association summary statistics for the loneliness field
were obtained from an open UK Biobank resource (https://github.
com/Nealelab/UK_Biobank_GWAS#imputed-v3-phenotypes). The
genetic correlations between loneliness and the full collection of 774
available demographic, lifestyle, and disease phenotypes were then
computed using HapMap3 single-nucleotide polymorphisms (SNPs)
from the LDHUB platform (http://ldsc.broadinstitute.org/ldhub/).
After Bonferroni’s correction for multiple comparisons, 264
genetically correlated pairs of phenotypes achieved statistical sig-
nificance at p < 0.05. Importantly, our loneliness phenotype shared
only moderate genetic overlap with body mass index (Rg= 0.26),
level of education (Rg=−0.31), depressive disorder (Rg= 0.61),
anxiety (Rg= 0.59), or alcohol intake (Rg= 0.37; see Supplementary
Table 2 for full results including confidence intervals and p-values).
These preliminary findings suggest that binary loneliness reports
from UK Biobank participants reflect a heritable biological variation,
which is associated with a specific set of driving genetic variants.

In the first of the three examined neuroimaging modalities, we
explored whether loneliness can be explained by gray matter
volume variation in large-scale brain networks across their con-
stituent brain regions. A Bayesian hierarchical framework was
devised to associate loneliness with volume variation in all 100
brain regions as a function of seven spatially distributed brain
networks based on the Schaefer-Yeo atlas37. At the network level,
volume variation in the default network dominated the relation to
loneliness with the largest share of explained variance (posterior
sigma= 0.07; 5–95% highest posterior density [HPD]= 0.04/.10;
Fig. 1). The highest relevance of the collection of default network
regions in loneliness was followed by overall associations of the
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limbic network (sigma= 0.06, HPD= 0.01/0.14), dorsal attention
network (sigma= 0.05, HPD= 0.01/0.09), somatomotor network
(sigma= 0.04, HPD= 0.01/0.08), visual network (sigma= 0.04,
HPD= 0.01/0.07), frontoparietal control network (sigma= 0.03,
HPD= 0.01/0.06), and, relatively least explanatory, the salience
network (sigma= 0.02, HPD= 0.01/0.05). Considering the con-
fidence estimates of overall network relevances (i.e., 5–95% HPD
interval of the posterior density of sigma), the default network
also prominently featured the most informative (i.e., tight-
est width) posterior distribution among all seven network var-
iance components. This finding suggests that distributed patterns
of gray matter variability across all examined canonical networks
were linked to loneliness. However, regions collectively compos-
ing the default network showed consistently strongest volume
deviations in lonely participants; some of which based on positive,
some with negative regional associations with that trait (Fig. 1).

We subsequently examined the association between loneliness
and regional brain structure in our population cohort. The Bayesian

hierarchical approach was used to focus on variation in gray matter
volume in the 100 individual atlas regions (Fig. 1). Positive region-
level volume associations with loneliness emerged in the posterior
superior temporal sulcus on the left (posterior mean= 0.14, 5–95%
HPD= 0.01/0.27) and right (mean= 0.27, HPD= 0.10/0.44), the
left temporoparietal junction (mean= 0.17, HPD= 0.05/0.28), as
well as the left fusiform gyrus (posterior mean= 0.13, HPD= 0.01/
0.26), right inferior temporal gyrus (mean= 0.31, HPD= 0.16/0.46),
right posterior parietal lobe (mean= 0.15, HPD= 0.03/0.26), and
right dorsal anterior cingulate cortex (mean= 0.14, HPD= 0.01/
0.28). In contrast, the left dorsal anterior cingulate cortex showed a
negative region-level volume association (mean=−0.14, HPD=
−0.27/−0.01) in addition to the dorsolateral prefrontal cortex on the
left (mean=−0.12, HPD=−0.24/−0.01) and right (mean=
−0.12, HPD=−0.22/−0.02), the right central operculum (mean=
−0.16, HPD=−0.29/−0.05) and the right inferior parietal lobule
(mean=−0.27, HPD=−0.42/−0.14), left retrosplenial cortex
(mean=−0.19, HPD=−0.30/−0.08) as well as the inferior visual
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Fig. 1 Population associations between loneliness and brain structure. To provide a richer and more precise picture of variation, we purpose-designed a
Bayesian hierarchical framework. The fully probabilistic modeling approach allowed jointly estimating varying effects in separate brain regions and spatially
distributed networks of constituent brain regions. In rough analogy to ANOVA, the network definitions could be viewed as “factors” and the region
definitions could be viewed as continuous factor “levels”. This analysis tactic enabled quantifying the extent to which spatially dispersed regional variation
in gray matter volume can be better explained by coherent differences in major brain networks. a Contribution of each regional brain volume (thresholded
according to 5–95% highest posterior density [HPD], black horizontal line in b–h) to explain the difference between lonely and non-lonely individuals.
Yellow/green = positive/negative volume association. b–h Shows the degree to which volume variation in each canonical network of regions
reliably relates to loneliness. Posterior distributions for the variance parameter (sigma) of each brain network are ordered from the most important (default
network) to the least explanatory (salience network). CO central operculum, ITG inferior temporal gyrus, pSTS posterior superior temporal sulcus, TPJ
temporoparietal junction, IPL inferior parietal lobe, dACC dorsal anterior cingulate cortex, dlPFC dorsolateral prefrontal cortex, RSP retrosplenial cortex, FG
fusiform gyrus, IVG inferior visual gyrus, L/R denotes left/right hemisphere. The shown Bayesian model was fitted once to our whole UKB sample, but
brain-loneliness associations held up to cross-validated out-of-sample testing in structural MRI (Supplementary Fig. 11). Source data are provided as a
Source Data file.
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cortex on the left (mean=−0.18, HPD=−0.33/−0.01) and right
(mean=−0.19, HPD=−0.34/−0.03). Thus, regarding the level of
individual brain regions, lonely UK Biobank participants showed
idiosyncrasies in gray matter morphology distributed across
the brain.

We next investigated the impact of biological sex on the
association between gray matter volumes and trait loneliness. As
observed in the main findings, the default network showed the
most reliable relationship with loneliness. This association was
consistent across men (posterior sigma= 0.08, 5–95% HPD=
0.05/0.13) and women (sigma= 0.08, HPD= 0.03/0.13; Supple-
mentary Table 3). However, reliable sex differences in the rela-
tionship between loneliness and brain structure were observed in
the somatomotor network: men showed stronger volume asso-
ciations (sigma= 0.10, HPD= 0.02/0.16) than women (sigma=
0.03, HPD= 0.01/0.06; Supplementary Fig. 1). At the single-
region level, the right dorsomedial prefrontal cortex showed a
negative volume association in men (mean=−0.10, HPD=
−0.22/−0.01), in contrast to that of women (mean= 0.04, HPD
=−0.04/0.13). We thus identified robust gray matter differences
between lonely men and women that were reliable, both in
individual brain regions and integrative brain networks.

In a second set of analyses, we examined the resting-state
functional connectivity between the 100 regions from the
Schaefer-Yeo atlas (as above) with their relation to loneliness.
This in vivo measure of cortex-wide intrinsic functional couplings
in each participant was submitted to a multivariate pattern-
recognition algorithm (Fig. 2). Partial least squares was used to
identify the single most coherent pattern of deviation within the
functional connectome that characterize lonely individuals. In the
statistically strongest population mode of functional covariation
(p < 0.05 based on non-parametric permutation test), lonely
individuals demonstrated a greater magnitude of within-network
coupling for the default network. That is, the most prominent
within-network alterations emerged for regions communicating
with other regions within the default network. Additionally, trait
loneliness was also partly explained by up-regulated between-
network coupling of the default network with the limbic, dorsal
attention, and somatomotor networks. Those canonical networks
are more functionally anti-correlated in non-lonely participants.
As the second most prominent finding in brain function, lonely
individuals showed a pattern of greater within-network coupling
for the visual network. This lower-sensory network also showed
weaker between-network coupling with several other neural sys-
tems of the brain.

We again explored potential sex differentiation by repeating
these pattern-learning analyses in male and female cohorts
separately. While the functional coupling patterns observed in the
whole group analysis were preserved for the sex-based analyses
(Supplementary Fig. 2), the connectivity pattern linked to lone-
liness appeared to be more strongly expressed in men than
women. Taken together, the results on loneliness and functional
brain connectivity suggest a shift of balance between networks
situated lower (sensory) versus higher (integrative) systems in the
neural processing hierarchy, and this shift appears greater
for men.

In the third set of analyses, we examined whether loneliness is
related to the white matter integrity of major tracts from the widely
used John-Hopkins atlas (Fig. 3 and Supplementary Table 4).
Among the 48 candidate tracts, the strongest linear associations
were found in three tracts that are known to carry fibers of
the fornix, which originate from the hippocampus (Pearson’s
rhofornix= 0.06, rhofornix_cres_left= 0.05, rhofornix_cres_right= 0.05; all
p < 0.001 after family-wise error correction with Bonferroni’s
method; see Supplementary Tables 2–4 for full details). Additional
tests for non-linear associations (Spearman’s rho) that can detect

more complicated patterns in the data further confirmed the fornix
tracts to be the top 3 tracts with relation to loneliness.

As we did for the volumetric and functional coupling analyses,
we repeated the diffusion analyses separately for males
and females. For all three fornix-related fiber bundles,
these analyses revealed stronger effect sizes in men (Pearson’s
rhofornix= 0.05, rhofornix_cres_left= 0.05, rhofornix_cres_right= 0.03)
than in women (Pearson’s rhofornix= 0.03, rhofornix_cres_left=
0.02, rhofornix_cres_right= 0.02). We made similar observations
when testing for non-linear associations (Spearman’s rho).
As such, the exploration of white matter microstructure revealed
that the major output tract of the hippocampus in the limbic
medial temporal lobe, channeling information to higher inte-
grative brain regions, has greater microstructural integrity in
individuals who report being lonely. These anatomical associa-
tions with loneliness were more pronounced in men, compared to
women, in our population cohort (see Supplementary Tables 5
and 6 for details including population confidence intervals).

Note that the above findings in each neuroimaging modality
were obtained after adjusting for nuisance variation that was related
to body mass index, head size, head motion during task-related
brain scans, head motion during resting-state fMRI scanning, head
position as well as receiver coil in the scanner (x, y, and z), position
of scanner table, and data acquisition site (cf. methods). Addi-
tionally, the convergent findings from structural, functional, and
diffusion imaging modalities held up after accounting for variation
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Fig. 2 Statistically strongest population mode of functional connectivity
deviations related to loneliness. Loneliness is linked to functional coupling
shifts (on z-score scale) with increased intra-network connectivity
especially in the default network and decreased inter-network connectivity
of the visual cortex with various other neural systems, including the default
network. The best partial least-squares mode was computed and found
statistically significant at p < 0.05 according to non-parametric permutation
testing (false discovery rate, one-sided test, no additional adjustment for
multiple comparisons). L/R denotes left/right hemisphere. The shown
machine-learning model was fitted once to our whole UKB sample, but
brain-loneliness associations held up to cross-validated out-of-sample
testing in functional MRI (Supplementary Fig. 11). Source data are provided
as a Source Data file.
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in our brain data that could be explained by clinical diagnoses of
major depressive disorder (ICD F32*/F33*) and anxiety disorders
such as agoraphobia, social phobia, panic disorder, or generalized
anxiety disorder (ICD F40*/F41; Supplementary Fig. 3 and Sup-
plementary Tables 7–9). Accounting for trait neuroticism, regular
alcohol consumption, education, higher-order age effects, and
adiposity also confirmed the strongest gray matter deviation of
default network regions in loneliness, heightened functional cou-
pling inside the default network, and fornix fibers remained the
strongest associations of white matter tracts with loneliness (Sup-
plementary Figs. 4–8 and Supplementary Tables 10–24). Moreover,
we also observed this constellation of findings after accounting for
any ethnicity other than white British ancestry (Supplementary
Fig. 9 and Supplementary Tables 25–27).

We next examined how the brain and trait loneliness asso-
ciations for each modality were related across brain-imaging
modalities. These linear associations confirm the broad pattern of
associations, but also highlight that each modality-specific ana-
lysis revealed specific features of brain-loneliness associations
(Supplementary Fig. 10). Finally, we computed modality-specific
effect sizes as well as derived in-sample model accuracy and out-
of-sample prediction performances in structural, functional, and

diffusion MRI as additional evidence for the robustness of the
observed associations between brain measures and trait loneliness
(Supplementary Fig. 11).

Discussion
The course of primate evolution has been marked by a trajectory
towards social coordination and cooperation1,2. Increasing soci-
ality has coincided with the emergence of more sophisticated,
computationally more powerful, and metabolically more expen-
sive brains1. Hence, we expected unmet desires for social inter-
action in humans (i.e., loneliness) to be associated with a unique
neural signature, which implicates evolved higher-associative
regions. Gray matter volumes, intrinsic functional connectivity,
and white matter tract integrity showed distinctive features in the
“lonely brain”. While differences were observed across the brain,
three separate windows into the brain using multimodal neu-
roimaging converged on the default network as the center of the
neural expression of loneliness.

Among the scant human neuroscience studies on loneliness,
visual, attention, and limbic regions have been repeatedly
emphasized21,22,27. These neural findings align with the
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Fig. 3 Fornix fibers emerging from the hippocampus are linked to loneliness. Among 48 examined major white matter tracts (ordered from strongest to
weakest association), the top three fiber bundles with relation to loneliness carried fornix fibers (red) towards higher integrative brain areas including
regions of the default network (tracts statistically significant at p < 0.001, after Bonferroni’s family-wise error correction, show asterisks). In addition to the
obtained Pearson’s correlation rho between loneliness and tract microstructure (center of barplot), population intervals of 5–95% uncertainty (error bars)
estimated the expected variation of this correlation effect size based on 100 bootstrap resampling iterations (cf. Supplementary Tables 4–6). L/R left/right
hemisphere. The shown combination of Pearson’s correlation and bootstrapping was carried out in our whole UKB sample, but brain-loneliness
associations held up to cross-validated out-of-sample testing in diffusion MRI (Supplementary Fig. 11). Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20039-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6393 | https://doi.org/10.1038/s41467-020-20039-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


behavioral sequelae of loneliness, which involves an attentional
bias for negative social cues in the context of reduced cognitive
control22–24,30. Consistent with these earlier neuroimaging
results, we confirm gray matter deviations related to loneliness in
attentional and limbic networks in UK Biobank participants.
Further, at the population-level, we have associated loneliness
with shifted functional connectivity within the visual sensory
cortex and between the visual system and other canonical brain
networks, paralleling early task functional MRI experiments22.
Consistent with this, Layden et al.30 recently proposed a neural
account of loneliness that included heightened functional con-
nectivity within a cingulo-opercular vigilance network and
reduced connectivity between this network and parietal brain
regions implicated in control processes. In line with this previous
research, we also observed consistent volumetric alterations in
right inferior parietal and cingulo-opercular regions as well as in
dorsolateral prefrontal cortex. Taken together, our findings sup-
port this tentative neural model of loneliness. Brain regions
associated with perceptual, attentional, and affective processing of
social information were indeed altered by the experience of
loneliness.

However, our collective multimodal findings question the
completeness of the predominant neural account of loneliness,
which places emphasis on altered externally oriented social pro-
cessing. Across three complementary brain measurements, we
have observed the most salient brain manifestations of loneliness
in the default network. Against our expectations, cortical volumes
in several default network regions were larger for lonely than
non-lonely individuals. A similarly unexpected pattern of positive
associations was corroborated for both functional connectivity
and white matter structure. Functional connectivity shifts within
the default network, as well as between the default, limbic, and
somatosensory networks, was positively linked to loneliness. In
line with these observations, the microstructural integrity of the
fornix, a core fiber tract carrying neural signals via axonal con-
nections from the hippocampal subsystem into the cor-
tical default network38, was greater in lonely individuals.

The default network is an assembly of higher association areas,
which is known to overlap with the human social brain34,39.
Advanced social abilities of humans likely developed in parallel
with the rapid expansion of cortical volume in humans, involving
default network regions, as compared to our closest primate
ancestors40. Numerous studies have now shown that this collec-
tion of brain regions, including the medial temporal memory
subsystem, is reliably engaged by experimental tasks that require
withdrawal from perceptual experiences in the sensory environ-
ment to internally constructed mental simulations of physically,
temporally, and socially distal events41. The default network is
well-known to be implicated in mental representations of oneself
across time and space, including the reconstruction of one’s
personal past, prospecting and planning about an envisioned
future, imagination and creative thought as well as simulating
thoughts, places, and events33. The default network is also
recognized for its role in representing other people, including
their intentions, identity, and affiliation33,34,42,43.

Recent work has demonstrated that lonely individuals show
greater distinction between neural representations of oneself from
social others within the medial prefrontal cortex, a core node of
the default network44. This observation was taken to suggest that
the subjective experience of social distance is instantiated as
greater distance between neural representations of oneself and
social others in the default network of the brain44. These authors
argue that the social brain facilitates navigation of the social world
in part through an egocentric proximity mapping, based upon
affiliation and closeness, of other people within our social net-
work. Chronic feelings of social disconnection are mirrored by a

‘lonelier’ neural self-representation, which distorts the inter-
nal neural representation of others.

Our population-level findings are in line with and extend this
previous view, which relates mnemonic as well as social functions of
the default network to the subjective experience of loneliness. In the
context of previous research, we speculate that in the absence of
desired social experiences, lonely individuals may be biased towards
internally directed cognitions mediated by default network brain
regions33. Phenomenologically, this brain-behavior association
would manifest as greater attention to one’s inner milieu, and a
heightened focus on the self and self-reflective thoughts, which
would naturally engage memory-based functions of the default
network. These neurocognitive processes include reminiscing,
future thinking, imagining or mentally simulating desired social
exchanges. Consistent with this idea, persons who face social dis-
connection are known to more frequently engage in random ima-
gination of social interaction45, nostalgic reminiscences46,47,
hypothetical conversations48, and treating pets as if they were
human agents49.

This link between loneliness and the mnemonic functions of the
default network dovetails with our observation of greater micro-
structure of the fornix fiber bundle in lonely individuals. Direct
axonal connections between the limbic system and regions of the
higher association cortex are carried by the fornix white matter tract.
Specifically, this major output pathway transports signals from the
hippocampus to the medial prefrontal cortex of the default net-
work50. Inter-individual differences in fornix microstructure were
indeed reported to explain variation in episodic detail generation51

during both recollection and prospection52. Thus, the integrity of this
pathway is likely implicated in recapitualization of the past and
imagination of the future – all forms of mental simulation that are
known to be heightened in lonely individuals45–49.

We extend the nascent neuroimaging research on loneliness by
directly exploring sex differences in these brain-behavior associa-
tions. While one previous neuroimaging study did not find sex
differences31, our population study uncovered a pattern of sex
differentiation indexed by structural, functional, and diffusion
imaging markers. The sex-focused analyses closely reflected the
findings from the full sample. However, we observed a recurring
trend of more prominent associations between loneliness and brain
structure and function for men compared to women. This sex
idiosyncrasy was particularly apparent in functional connectivity
fingerprints and white matter architecture. Loneliness in men was
associated with more pronounced within-network coupling of the
default network and functional de-coupling of the lower visual-
sensory networks, and greater structural integrity of the fornix.
We thus report tentative sex-specific patterns in three separate
types of brain tissue measures. Stigma may preclude more men
from self-labeling as lonely, resulting in a lower reporting threshold
for women than men53. Future work is necessary to further
explore possible sex differentiation in loneliness and its
neurocognitive bases.

From a broader perspective, our results also raise new questions
regarding the potential neural substrates of loneliness in later life.
There is now an abundance of evidence demonstrating that large-
scale brain networks, including the default and frontoparietal
control networks, display reduced within- and increased between-
network connectivity in older adulthood33,54–56. The UK Biobank
sample examined here represents a mid- to late-adulthood cohort
(mean age: 54.9 years, range 40–69 years at enrollment). Thus, our
findings of greater integrity within the default network may appear
counterintuitive in this late middle-age to older adult cohort. In
particular, earlier work reported lower intrinsic functional con-
nectivity of the default network to be associated with loneliness in
a cohort of young adults57. However, the mid- to late-adulthood
sample assessed here possibly included more participants who
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experienced chronic periods of loneliness than in the young adult
study. While the UK Biobank provides only a single brain scan-
ning session for the majority of the participants, chronic loneliness
may be associated with greater coupling among default network
brain regions, as well as greater between-network connectivity
with the frontoparietal control network, and signal a maladaptive
shift in the network architecture of the lonely aging brain.

Our population neuroscience investigation capitalized on the
rich UK Biobank imaging-genetics resource to systematically
chart the brain manifestations linked to loneliness. Three separate
windows into the human brain enabled a more integrated
understanding of the neural signature linked to perceived social
isolation. While some discovered brain substrates are subtle, the
brain-loneliness associations held up to cross-validated prediction
in unseen participants in all three brain-imaging modalities
(Supplementary Fig. 11). As our core conclusion, brain diver-
gence found in lonely, compared to non-lonely, individuals cen-
tered on the default network – a collection of brain regions
otherwise known to overlap with the ‘social brain’. We speculate
that the associations between the default network and loneliness
revealed here reflect increased demands on episodic mental
simulation of inner social events in the absence of desired social
experience in the external world.

Methods
Rationale and workflow summary. To extend earlier neuroimaging studies on
loneliness, we aimed at a comprehensive multimodal assessment of how loneliness
manifests itself in the brain across structural, functional, and diffusion brain scanning.
These three views into the neuroscientific phenomenon of trait loneliness however
relied on divergent MRI physics, as well as different aspects of sampled tissue biology,
and thus resulted in distinct signal properties. For these reasons, we aimed to carefully
tailor our analytical approach to each imaging modality.

For the structural brain scans, the single set of gray matter measurements (100
regions) per participant was analyzed by assuming interregional associations, as
defined through the hierarchical region-network information in the atlas,
which could be naturally integrated into the design of a Bayesian hierarchical
model, while the uncertainty in effect sizes can be evaluated by posterior parameter
distributions. The time series derived from functional brain scans were first
summarized into a connectivity matrix of interregional coupling estimates (4950
connectivity links) specific for each participant. These functional coupling matrices
were then analyzed by partial least squares (PLS), which is known to deal well with
strongly correlated high-dimensional data, while the uncertainty in effect sizes was
evaluated based on empirical permutation distributions. For these cross-
connectivity matrices, application of our Bayesian hierarchical approach would be
more challenging for reasons including computational feasibility, inability to assign
each region-region link to a single brain network, and the presence of strong
collinearity in the data - a scenario for which PLS, however, is a natural choice. For
the diffusion brain scans, in turn, microstructure of interregional fiber tracts (48
measurements) of each participant were associated with trait loneliness using
Pearson’s correlation, while uncertainty in effect sizes was evaluated based on
bootstrapping resampling distributions. The anatomical tract properties were
analyzed with the simplest approach that answered our research question at hand.
This is because no obvious hierarchical structure suggested itself (in contrast to
structural MRI) and exploiting collinearity was less urgent (in contrast to
functional MRI).

Data resources. The UK Biobank is a prospective epidemiology resource that
offers extensive behavioral and demographic assessments, medical and cognitive
measures, as well as biological samples in a cohort of ~500,000 participants
recruited from across Great Britain (https://www.ukbiobank.ac.uk/). This openly
accessible population dataset aims to provide multi-modal brain imaging for
~100,000 individuals planned for completion in 2022. The present study was based
on the recent data release from February/March 2020. To improve comparability
and reproducibility, our study built on the uniform data preprocessing pipelines
designed and carried out by FMRIB, Oxford University, UK58. Our study involved
data from 38,701 participants with brain-imaging measures of gray matter mor-
phology (T1-weighted MRI [sMRI]), white matter microstructure (diffusion MRI
[dMRI]), and neural activity fluctuations (resting-state functional MRI [fMRI])
from 47.5% men and 52.5% women, aged 40–69 years when recruited (mean age
54.9, standard deviation [SD] 7.5 years; see Supplementary Table 2 for socio-
demographic characteristics of the sample). The present analyses were conducted
under UK Biobank application number 25163. All participants provided written,
informed consent and the study was approved by the Research Ethics Committee
(REC number 11/NW/0382). Further information on the consent procedure can be
found elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200).

Our study focused on trait loneliness, which was based on the following
question: “Do you often feel lonely?” (yes= 1, no= 0). The need for brief
loneliness assessments has long been recognized, particularly for inclusion in large
population-based studies59. Self-reported binary loneliness assessment shows
strong convergent validity with more extensive self-report measures60. Indeed, in
the original validation study of the UCLA loneliness scale, which is considered a
gold standard assessment, Russell et al.61 reported strong and reliable correlations
with a single-item loneliness measure (rho= 0.79). As additional support of our
target measure, in a systematic review of loneliness and health in older adulthood,
Ong et al.59 identified numerous studies that have successfully used a single item to
assess the experience of loneliness (e.g., refs. 62,63). Consistent with this standard,
several behavioral and health-related studies have now reported results using the
UK Biobank measure of trait loneliness64–67.

Multimodal brain imaging and preprocessing procedures. Magnetic resonance
imaging (MRI) scanners (3T Siemens Skyra) were matched at several dedicated
imaging sites with the same acquisition protocols and standard Siemens 32-channel
radiofrequency receiver head coils. To protect the anonymity of the study parti-
cipants, brain-imaging data were defaced and any sensitive meta-information was
removed. Automated processing and quality control pipelines were deployed58,68.
To improve homogeneity of the imaging data, noise was removed by means of
190 sensitivity features. This approach allowed for the reliable identification and
exclusion of problematic brain scans, such as due to excessive head motion.

Structural MRI. The sMRI data were acquired as high-resolution T1-weighted
images of brain anatomy using a 3D MPRAGE sequence at 1 mm isotropic reso-
lution. Preprocessing included gradient distortion correction (GDC), field of view
reduction using the Brain Extraction Tool69 and FLIRT70,71, as well as non-linear
registration to MNI152 standard space at 1 mm resolution using FNIRT72 (tools
part of FMRIB Software Library v6.0). To avoid unnecessary interpolation, all
image transformations were estimated, combined and applied by a single inter-
polation step. Tissue-type segmentation into cerebrospinal fluid (CSF), gray matter
(GM), and white matter (WM) was applied using FAST (FMRIB’s Automated
Segmentation Tool)73 to generate full bias-field-corrected images. SIENAX74, in
turn, was used to derive volumetric measures normalized for head sizes.

Resting-state functional MRI. The fMRI data of intrinsic brain activity were
acquired without engagement in a predefined experimental task context at 2.4 mm
spatial resolution, time to repeat= 0.735 s, and with multiband acceleration of 8. A
single-band reference image with higher between-tissue contrast and without T1-
saturation effects was acquired within the same geometry as the time series of
neural activity maps. The reference scan was used for the alignment to other brain-
imaging modalities and correction for head motion. Preprocessing was performed
using MELODIC75 (tools part of FMRIB Software Library v6.0), including EPI and
GDC unwarping, motion correction, grand-mean intensity normalization, and
high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting,
sigma= 50 s). The ensuing images were submitted to motion correction using
MCFLIRT70. Structured artefacts were removed by combining ICA and FMRIB’s
ICA-based X-noiseifier76. To help reduce unnecessary interpolation effects, all
intermediate warp operations were merged into a composite transformation
allowing for simultaneous application to fMRI maps.

Diffusion-weighted MRI. All dMRI data were encoded in AP direction and acquired
with two b-values (b= 1000 and b= 2000 s/mm3) at 2mm spatial resolution. Pre-
processing included eddy current-induced distortion correction, correction for head
motion, and removal of outlier brain slices. GDC was applied after eddy correction to
avoid moving data out of the image plane77. In all, 50 distinct diffusion-encoding
directions were acquired. Diffusion tensor imaging (DTI) then yielded several
quantities of fiber-tract anatomy, including the widely used fractional anisotropy
(FA). Modeling DTI parameters was based on tract-based spatial statistics (TBSS,
tools part of FMRIB Software Library v6.0)78. All FA images were aligned to create a
group mean FA skeleton using high-dimensional non-linear registration79.

Analysis of associations between loneliness and gray matter structure.
Neurobiologically interpretable measures of gray matter volume were extracted in all
participants by summarizing whole-brain sMRI maps in MNI reference space. This
feature-generation step was guided by the topographical brain region definitions of
the commonly used Schaefer-Yeo atlas comprising 100 parcels37. The derived
quantities of local gray matter morphology comprised 100 volume measures for each
participant. The subject-level brain region volumes provided the input variables for
our Bayesian hierarchical modeling approach (cf. below). As a data-cleaning step,
inter-individual variation in brain region volumes that could be explained by nuisance
variables of no interest were regressed out: body mass index, head size, head motion
during task-related brain scans, head motion during resting-state fMRI scanning,
head position and receiver coil in the scanner (x, y, and z), position of scanner table,
as well as the data acquisition site.

To examine normative population variation of our atlas regions in the context
of trait loneliness, Bayesian hierarchical modeling was a natural choice of method,
building on our previous work on joint region-network modeling80–82. In
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contrast, classical linear regression combined with statistical significance testing
would simply have provided p-values against the null hypothesis of no difference
between lonely and non-lonely participants in each brain region. Instead of
limiting our results and conclusions to strict categorical statements, each region
being either relevant or not, our analytical strategy aimed at full probability
distributions that expose how brain region volumes converge or diverge in their
relation to loneliness to the extent supported by the UK Biobank population. In
this way, our approach provided coherent, continuous estimates of uncertainty for
each model parameter at play for its relevance in loneliness. Our study thus
addressed the question ‘How certain are we that a regional brain volume is
divergent between lonely and non-lonely individuals?’. This analysis did not ask ‘Is
there a strict categorical difference in region volume between lonely and non-
lonely individuals?’.

The elected Bayesian hierarchical framework also enabled simultaneous
modeling of multiple organizational principles: segregation into separate brain
regions and integration into groups of brain regions by spatially distributed brain
networks. Two regions of the same brain network are more likely to exhibit
correlated volume associations than two regions belonging to two distinct brain
networks. Each of the 100 region definitions was pre-assigned to one of the seven
large-scale network definitions in the Schaefer-Yeo atlas37, providing a native
multilevel structure. Setting up a hierarchical generative process enabled our
analytical approach to borrow statistical strength between model parameters at the
higher network level and model parameters of the lower level of constituent brain
regions. By virtue of partial pooling, the brain region parameters were modeled
themselves by the hyper-parameters of the hierarchical regression as a function of
the network hierarchy to explain trait loneliness. Assigning informative priors,
centered around zero, provided an additional form of regularization by shrinking
coefficients to zero in the absence of evidence to the contrary. We could thus
provide fully probabilistic answers to questions about the morphological relevance
of individual local brain regions and distributed cortical networks by a joint
varying-effects estimation that profited from several neurobiologically meaningful
sources of population variation.

The first model specification was tailored to careful inference of the posterior
distributions of parameters at the brain region level to explain possible divergence
between lonely and non-lonely individuals (model equation (1)):
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where β denote the slopes for the brain volumes x for all 100 regions of the
Schaefer-Yeo atlas (z-scored across participants), y denotes trait loneliness of each
participants, and the hyper-parameters capture volume variation at the network
level through seven multivariate Gaussian distributions (MVNormal) that jointly
inform parameters at the region level. The parameters of the network covariance
matrices were directly inferred from the data. The estimation of these covariance
relationships was guided by the LKJ correlation prior83. Potential confounding
influences were acknowledged by the nuisance variables α, accounting for variation
that could be explained by sex and (z-scored) age.

The second model specification put emphasis on careful inference of unique
posterior distributions of parameters at the brain network level to discriminate
lonely versus non-lonely individuals (model equation (2)):

y � Bernoulli pð Þ
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where Σ parameters estimated the overall variance across the regions that belong to
a given canonical network, independent of whether the volume associations of the
respective constituent brain regions had positive or negative direction. As such, the
network variance parameters Σ directly quantified the magnitude of intra-network
coefficients, and thus the overall relevance of a given network in explaining
loneliness based on the dependent region morphology measures. All regions
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belonging to the same brain network share the same variance parameter in the
diagonal of the covariance matrix, while off-diagonal covariance relationships are
zero. The index g either collapsed to a single group or extended the model to jointly
estimate parameters specific for men and women.

Probabilistic posterior distributions for all model parameters were estimated
for the hierarchical models. Our Bayesian approach could thus simultaneously
appreciate gray matter variation in segregated brain regions as well as in
integrative brain networks in a population cohort. The approximation of the
posterior distributions was carried out by the NUTS sampler84, a type of Markov
chain Monte Carlo (MCMC), using the PyMC3 software (Python package, version
3.8)85. After tuning the sampler for 4000 steps, we drew 1000 samples from the
joint posterior distribution over the full set of parameters in the model for
analysis. Proper convergence was assessed by ensuring Rhat measures84 stayed
below 1.02.

Analysis of associations between loneliness and functional connectivity pat-
terns. Quantitative measures of functional connectivity were computed for the
same 100 brain regions as defined by the Schaefer-Yeo atlas37. Functional con-
nectivity profiles for each participant were derived by computing Pearson’s cor-
relation between their neural activity fluctuations. To this end, in each participant,
the time series of whole-brain fMRI signals, obtained in a task-free manner, were
summarized by averaging for each brain region in the atlas. The approach yielded
the functional coupling signature of the whole cortex as a 100 × 100 region cou-
pling matrix for each participant. The ensuing region-region coupling estimates
underwent standardization across participants by centering to zero mean and unit
scaling to a variance of one (cf. next step). Inter-individual variation in the func-
tional coupling strengths between brain regions that could be explained by nui-
sance variables of no interest were regressed out in a data-cleaning step: body mass
index, head size, head motion during task-related brain scans, head motion during
resting-state fMRI scanning, head position as well as receiver coil in the scanner (x,
y, and z), position of scanner table, and data acquisition site.

We then sought the dominant coupling regime - “mode” of population
covariation - that provides insight into how functional variability in 100 brain
regions can explain trait loneliness. Partial least squares was a natural choice of
method (as implemented in Python package sklearn, version 0.21.3) to decompose
the obtained 100 × 100 matrix of functional coupling patterns with respect to
loneliness. The variable set X was constructed from the lower triangle of the
participants’ functional coupling matrices. The target vector y encoded lonely
participants as +1 and non-lonely participants as −1. In general, PLS involves
finding the matrix factorization into k low-rank brain representations that
maximize the correspondence with our social trait of interest. In our study, PLS
was thus used to identify the most explanatory projection that yielded maximal
covariance between sets of region couplings in the context of participant reports of
perceived social isolation.

In other words, the extracted chief functional coupling mode identified linear
combinations of cortical brain connections that featured the best correspondence
to loneliness. Concretely, positive (negative) modulation weights revealed increased
(decreased) correlation strengths, relative to average functional coupling. This is
because the computed functional connectivity estimates were initially normalized
to zero mean and unit variance across participants. For instance, a functional
connectivity input into PLS of 0 denoted the average functional coupling strength
in our UK Biobank sample, rather than an absence of functional connectivity
between the region pair. The derived PLS weights thus indicated deviations from
average functional coupling patterns in our cohort. Moreover, the variable sets
were entered into PLS after a confound-removal procedure (cf. above).

The resulting dominant PLS mode of loneliness-related functional coupling
deviations was assessed for statistical robustness in a non-parametric permutation
procedure, which is in line with previous research68. Relying on minimal modeling
assumptions, a valid empirical null distribution was derived for the achieved
Pearson’s correlation between low-rank projections of each mode resulting from
PLS analysis. In 1000 permutation iterations, the functional connectivity matrix
was held constant, while the loneliness labels were submitted to random shuffling.
The constructed surrogate data preserved the statistical structure idiosyncratic to
the fMRI signals, yet permitted to selectively destroy the signal property related to
loneliness86. The generated distribution of the test statistic reflected the null
hypothesis of random association between the brain’s functional coupling and
loneliness status across participants. The Pearson’s correlations rho between the
perturbed low-rank projection was recorded in each iteration. P-values were
derived based on the 1000 Pearson’s rho estimates from the null PLS model.
Correction for multiple comparisons was not necessary since our study considered
exclusively the leading functional coupling mode as estimated by PLS, which
turned out to be statistically significant at p < 0.05.

Analysis of associations between loneliness and white matter structure. In
each participant, mean FA data (cf. above) from the local center of the neighboring
tract were projected onto the common-space FA skeleton. For each voxel of the
mean skeleton, the FA image of a given individual was searched perpendicularly to
the tract direction to locate the subject-specific optimal FA value representing the
fiber tract in that individual. Each voxel FA value was thus assigned to the

representative location in the mean FA skeleton. The standard-space warping
strategy was applied to ensure precise alignment of fiber-tract topography between
individuals. For the mean FA dMRI parameter, white matter summary measures
were extracted by computing the average within regions defined as the intersection
of the skeleton with masks for 48 tracts from the widely used Johns Hopkins
University (JHU) atlas87, and translated into corresponding image-derived phe-
notypes (IDPs).

This approach resulted in a set of summary estimates of fiber bundle
microstructure for each of the 48 tracts from the JHU atlas. Inter-individual
variation in brain fiber tract features that could be explained by nuisance variables
of no interest were regressed out as a data-cleaning step: body mass index, head
size, head motion during task-related brain scans, head motion during resting-state
fMRI scanning, head position as well as receiver coil in the scanner (x, y, and z),
position of scanner table, and data acquisition site.

The measures of tract microstructure were then submitted to assessment for
linear (Pearson’s rho) and non-linear (Spearman’s rho) associations. To get a sense
of uncertainty in the tract-loneliness associations, we carried out a bootstrap
analysis with 100 resampling iterations. This procedure mimicked the participant
recruitment process by repeating the association analysis based on 100 perturbed
participant samples, selected with replacement. The ensuing 5–95% bootstrap
confidence intervals quantified the expected variation in the effect size (correlation
coefficient) if other participants would have been drawn from the same underlying
population. Correction for multiple comparisons was carried out based on
Bonferroni’s method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All used data are available to other investigators online (ukbiobank.ac.uk). The John-
Hopkins atlas is accessible online (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). The
Schaefer-Yeo atlas is accessible online (https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). Source data are
provided with this paper.
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