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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) allows estimation of individual-specific cortical

parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-HBM) for estimating

high-quality individual-specific network-level parcellations. Here, we extend the model to estimate individual-specific

areal-level parcellations. While network-level parcellations comprise spatially distributed networks spanning the cortex,

the consensus is that areal-level parcels should be spatially localized, that is, should not span multiple lobes. There is

disagreement about whether areal-level parcels should be strictly contiguous or comprise multiple noncontiguous

components; therefore, we considered three areal-level MS-HBM variants spanning these range of possibilities.

Individual-specific MS-HBM parcellations estimated using 10 min of data generalized better than other approaches using

150 min of data to out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional connectivity

derived from MS-HBM parcellations also achieved the best behavioral prediction performance. Among the three MS-HBM

variants, the strictly contiguous MS-HBM exhibited the best resting-state homogeneity and most uniform within-parcel

task activation. In terms of behavioral prediction, the gradient-infused MS-HBM was numerically the best, but differences

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab101/6263393 by Yale U

niversity user on 07 July 2021

https://academic.oup.com/
https://doi.org/10.1093/cercor/bhab101
http://orcid.org/0000-0001-9110-585X


2 Cerebral Cortex, 2021, Vol. 00, No. 00

among MS-HBM variants were not statistically significant. Overall, these results suggest that areal-level MS-HBMs can

capture behaviorally meaningful individual-specific parcellation features beyond group-level parcellations. Multi-resolution

trained models and parcellations are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_proje

cts/brain_parcellation/Kong2022_ArealMSHBM).

Key words: behavioral prediction, brain parcellation, difference, individual, resting-state functional connectivity

Introduction

The human cerebral cortex comprises hundreds of cortical areas

with distinct function, architectonics, connectivity, and topogra-

phy (Kaas 1987; Felleman and Van Essen 1991; Eickhoff, Consta-

ble, et al. 2018a). These areas are thought to be organized into at

least 6–20 spatially distributed large-scale networks that broadly

subserve distinct aspects of human cognition (Goldman-Rakic

1988; Mesulam 1990; Smith et al. 2009; Bressler and Menon 2010;

Uddin et al. 2019). Accurate parcellation of the cerebral cortex

into areas and networks is therefore an important problem in

systems neuroscience. The advent of in vivo noninvasive brain

imaging techniques, such as functional magnetic resonance

imaging (fMRI), has enabled the delineation of cortical parcels

that approximate these cortical areas (Sereno et al. 1995; Van

Essen and Glasser 2014; Eickhoff, Yeo, et al. 2018b).

A widely used approach for estimating network-level and

areal-level cortical parcellations is resting-state functional con-

nectivity (RSFC). RSFC reflects the synchrony of fMRI signals

between brain regions,while a participant is lying at restwithout

performing any explicit task, that is, resting-state fMRI (rs-fMRI;

Biswal et al. 1995; Fox and Raichle 2007; Buckner et al. 2013).

Most RSFC studies have focused on estimating group-level par-

cellations obtained by averaging data across many individuals

(Power et al. 2011; Yeo et al. 2011; Craddock et al. 2012; Zuo et al.

2012; Gordon et al. 2016). These group-level parcellations have

provided important insights into brain network organization but

fail to capture individual-specific parcellation features (Harrison

et al. 2015; Laumann et al. 2015; Braga and Buckner 2017; Gordon,

Laumann, Adeyemo, et al. 2017a). Furthermore, recent studies

have shown that individual-specific parcellation topography is

behaviorally relevant (Salehi et al. 2018; Bijsterbosch et al. 2019;

Kong et al. 2019; Mwilambwe-Tshilobo et al. 2019; Seitzman et al.

2019; Li,Wang, et al. 2019b; Cui et al. 2020),motivating significant

interest in estimating individual-specific parcellations.

Most individual-specific parcellations only account for inter-

subject (between-subject) variability, but not intra-subject

(within-subject) variability. However, inter-subject and intra-

subject RSFC variability can be markedly different across brain

regions (Mueller et al. 2013; Chen et al. 2015; Laumann et al.

2015). For example, the sensory-motor cortex exhibits low inter-

subject variability, but high intra-subject variability (Mueller

et al. 2013; Laumann et al. 2015). Therefore, it is important to

consider both inter-subject and intra-subject variability when

estimating individual-specific parcellations (Mejia et al. 2015,

2018; Kong et al. 2019). We have previously proposed a multi-

session hierarchical Bayesian model (MS-HBM) of individual-

specific network-level parcellation that accounted for both

inter-subject and intra-subject variability (Kong et al. 2019).

We demonstrated that compared with several alternative

approaches, individual-specific MS-HBM networks generalized

better to new resting-fMRI and task-fMRI data from the same

individuals (Kong et al. 2019).

In this study, we extend the network-level MS-HBM to

estimate individual-specific areal-level parcellations. While

network-level parcellations comprise spatially distributed

networks spanning the cortex, the consensus is that areal-level

parcels should be spatially localized (Kaas 1987; Amunts and

Zilles 2015), that is, an areal-level parcel should not span mul-

tiple cortical lobes. Consistent with invasive studies (Amunts

and Zilles 2015), most areal-level parcellation approaches

estimate spatially contiguous parcels (Shen et al. 2013; Honnorat

et al. 2015; Gordon et al. 2016; Chong et al. 2017). However,

a few studies have suggested that individual-specific areal-

level parcels can be topologically disconnected (Glasser et al.

2016; Li, Wang, et al. 2019b). For example, according to Glasser

et al. (2016), area 55b might comprise two disconnected, but

spatially close, components in some individuals. Given the lack

of consensus, we considered three different spatial localization

priors. Across the three priors, the resulting parcels ranged

from being strictly contiguous to being spatially localized with

multiple noncontiguous components.

We compared MS-HBM areal-level parcellations with three

other approaches (Laumann et al. 2015; Schaefer et al. 2018; Li,

Wang, et al. 2019b) in terms of their generalizability to out-of-

sample rs-fMRI and task-fMRI from the same individuals. Fur-

thermore, a vast body of literature has shown that RSFC derived

from group-level parcellations can be used to predict human

behavior (Hampson et al. 2006; Finn et al. 2015; Rosenberg et al.

2016; Li, Kong, et al. 2019a). Therefore, we also investigated

whether RSFC derived from individual-specific MS-HBM parcel-

lations could improve behavioral prediction compared with two

other parcellation approaches (Schaefer et al. 2018; Li, Wang,

et al. 2019b).

Methods

Overview

We proposed the spatially constrained MS-HBM to estimate

individual-specific areal-level parcellations. The model distin-

guished between inter-subject and intra-subject functional con-

nectivity variability, while incorporating spatial contiguity con-

straints. Three different contiguity constraints were considered:

distributed MS-HBM (dMS-HBM), contiguous MS-HBM (cMS-

HBM), and gradient-infused MS-HBM (gMS-HBM). The resulting

MS-HBM parcels ranged from being strictly contiguous (cMS-

HBM) to being spatially localized with multiple topologically

disconnected components (dMS-HBM). Subsequent analyses

proceeded in four stages. First, we explored the pattern of inter-

subject and intra-subject functional variability across the cortex.

Second,we examined the intra-subject reproducibility and inter-

subject similarity of MS-HBM parcellations on two different

datasets. Third, the MS-HBM was compared with three other

approaches using new rs-fMRI and task-fMRI data from the

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab101/6263393 by Yale U

niversity user on 07 July 2021

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2022_ArealMSHBM
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2022_ArealMSHBM


Individual-Specific Areal-Level Parcellation Kong et al. 3

same participants. Finally, we investigated whether functional

connectivity of individual-specific parcellations could improve

behavioral prediction.

Multi-session rs-fMRI Datasets

The Human Connectome Project (HCP) S1200 release (Van Essen,

Ugurbil, et al. 2012a; Smith et al. 2013) comprised structural MRI,

rs-fMRI, and task-fMRI of 1094 young adults. All imaging data

were collected on a custom-made Siemens 3T Skyra scanner

using amultiband sequence. Each participant went through two

fMRI sessions on two consecutive days. Two rs-fMRI runs were

collected in each session. Each fMRI run was acquired at 2 mm

isotropic resolution with a time repetition (TR) of 0.72 s and

lasted for 14 min and 33 s. The structural data consisted of one

0.7 mm isotropic scan for each participant.

The Midnight Scanning Club (MSC) multi-session dataset

comprised structural MRI, rs-fMRI, and task-fMRI from 10 young

adults (Gordon, Laumann, Gilmore, et al. 2017b; Gratton et al.

2018). All imaging data were collected on a Siemens Trio 3T MRI

scanner using a 12-channel head matrix coil. Each participant

was scanned for 10 sessions of rs-fMRI data. One rs-fMRI run

was collected in each session. Each fMRI run was acquired at

4mm isotropic resolutionwith a TR of 2.2 s and lasted for 30min.

The structural data were collected across two separate days and

consisted of four 0.8 mm isotropic T1-weighted images and four

0.8 mm isotropic T2-weighted images.

It is worth noting some significant acquisition differences

between the two datasets, including scanner type (e.g., Skyra vs.

Trio), acquisition sequence (e.g., multiband vs. non-multiband),

and scan time (e.g., day vs.midnight). These differences allowed

us to test the robustness of our parcellation approach.

Preprocessing

Details of the HCP preprocessing can be found elsewhere (Van

Essen, Ugurbil, et al. 2012a; Glasser et al. 2013; Smith et al. 2013;

HCP S1200 manual). Of particular importance is that the rs-

fMRI data have been projected to the fs_LR32k surface space

(Van Essen, Glasser, et al. 2012b), smoothed by a Gaussian ker-

nel with 2 mm full-width at half-maximum (FWHM), denoised

with ICA-FIX (Griffanti et al. 2014; Salimi-Khorshidi et al. 2014),

and aligned with MSMAll (Robinson et al. 2014). To eliminate

global and head motion-related artifacts (Burgess et al. 2016;

Siegel et al. 2017), additional nuisance regression and censoring

were performed (Kong et al. 2019; Li, Kong, et al. 2019a). Nui-

sance regressors comprised the global signal and its temporal

derivative. Runs with more than 50% censored frames were

removed. Participantswith all four runs remaining (N=835)were

considered.

In the case of the MSC dataset, we utilized the preprocessed

rs-fMRI data of nine subjects on fs_LR32k surface space. Pre-

processing steps included slice time correction, motion cor-

rection, field distortion correction, motion censoring, nuisance

regression, and bandpass filtering (Gordon, Laumann, Gilmore,

et al. 2017b). Nuisance regressors comprised whole brain, ven-

tricular and white matter signals, as well as motion regressors

derived fromVolterra expansion (Friston et al. 1996). The surface

data were smoothed by a Gaussian kernel with 6 mm FWHM.

One participant (MSC08) exhibited excessive head motion and

self-reported sleep (Gordon, Laumann, Gilmore, et al. 2017b;

Seitzman et al. 2019) and was thus excluded from subsequent

analyses.

Functional Connectivity Profiles

As explained in the previous section, the preprocessed rs-fMRI

data from the HCP and MSC datasets have been projected onto

fs_LR32K surface space, comprising 59 412 cortical vertices. A

binarized connectivity profile of each cortical vertex was then

computed as was done in our previous study (Kong et al. 2019).

More specifically, we considered 1483 regions of interest (ROIs)

consisting of single vertices uniformly distributed across the

fs_LR32K surface meshes (Kong et al. 2019). For each rs-fMRI

run of each participant, the Pearson’s correlation between the

fMRI time series at each spatial location (59 412 vertices) and the

1483 ROIs was computed. Outlier volumes were ignored when

computing the correlations. The 59412×1483 RSFC (correlation)

matrices were then binarized by keeping the top 10% of the

correlations to obtain the final functional connectivity profile

(Kong et al. 2019).

We note that because fMRI is spatially smooth and exhibits

long-range correlations, therefore considering only 1483 ROI

vertices (instead of all 59 412 vertices) would reduce compu-

tational and memory demands, without losing much informa-

tion. To verify significant information has not been lost, the

following analysis was performed. For each HCP participant, a

59 412× 59412 RSFCmatrix was computed from the first rs-fMRI

run. We then correlated every pair of rows of the RSFC matrix,

yielding a 59 412×59 412 RSFC similarity matrix for each HCP

participant. An entry in this RSFC similarity matrix indicates

the similarity of the functional connectivity profiles of two

cortical locations. The procedure was repeated but using the

59 412× 1483 RSFCmatrices to compute the 59 412×59 412 RSFC

similarity matrices. Finally, for each HCP participant, we corre-

lated the RSFC similarity matrix (generated from 1483 vertices)

and RSFC similarity matrix (generated from 59412 vertices).

The resulting correlations were high with r=0.9832 ± 0.0041

(mean±SD) across HCP participants, suggesting that very little

information was lost by only considering 1483 vertices.

Group-Level Parcellation

We have previously developed a set of high-quality population-

average areal-level parcellations of the cerebral cortex (Schaefer

et al. 2018), which we will refer to as “Schaefer2018.” Although

the Schaefer2018 parcellations are available in different spatial

resolutions, we will mostly focus on the 400-region parcellation

in this paper (Fig. 4A), given that previous work has suggested

that there might be between 300 and 400 human cortical areas

(Van Essen, Glasser, et al. 2012b). The 400-region Schaefer2018

parcellation will be used to initialize the areal-level MS-HBM for

estimating individual-specific parcellations. The Schaefer2018

parcellation will also be used as a baseline in our experiments.

Areal-Level MS-HBM

The areal-level MS-HBM (Fig. 1A) is the same as the network-

level MS-HBM (Kong et al. 2019) except for one crucial detail,

that is, spatial localization prior 8 (Fig. 1A). Nevertheless, for

completeness, we will briefly explain the other components of

the MS-HBM, although further details can be found elsewhere

(Kong et al. 2019).

We denote the binarized functional connectivity profile of

cortical vertex n during session t of subject s as Xs,t
n . For exam-

ple, the binarized functional connectivity profiles of a posterior

cingulate cortex vertex (X1,1
PCC) and a precuneus vertex (X1,1

pCun)

from the first session of the first subject are illustrated in Fig. 1A
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Figure 1. (A) MS-HBM of individual-specific areal-level parcellations. Xs,t
n denote the RSFC profile at brain location n of subject s during rs-fMRI session t. The shaded

circle indicates that Xs,t
n are the only observed variables. The goal is to estimate the parcel label lsn for subject s at location n given RSFC profiles from all sessions. µ

g
l
is

the group-level RSFC profile of parcel l. µs
l
is the subject-specific RSFC profile of parcel l. A large ǫl indicates small inter-subject RSFC variability, that is, the group-level

and subject-specific RSFC profiles are very similar. µ
s,t
l

is the subject-specific RSFC profile of parcel l during session t. A large σl indicates small intra-subject RSFC

variability, that is, the subject-level and session-level RSFC profiles are very similar. κl captures inter-region RSFC variability. A large κl indicates small inter-region

variability, that is, two locations from the same parcel exhibit very similar RSFC profiles. Finally, Θl captures inter-subject variability in the spatial distribution of

parcels, smoothness prior V encourages parcel labels to be spatially smooth, and the spatial localization prior 8 ensures each parcel is spatially localized. The spatial

localization prior 8 is the crucial difference from the original network-level MS-HBM (Kong et al. 2019). (B) Illustration of three different spatial localization priors.

Individual-specific parcellations of the same HCP participant were estimated using dMS-HBM, cMS-HBM, and gMS-HBM. Four parcels depicted in pink, red, blue, and

yellow are shown here. All four parcels estimated by dMS-HBM were spatially close together but contained two separate components. All four parcels estimated by

cMS-HBM were spatially contiguous. Three parcels (pink, red, and yellow) estimated by gMS-HBM were spatially contiguous, while the blue parcel contained two

separate components.
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(fourth row). The shaded circle indicates that Xs,t
n are the only

observed variables. Based on the observed connectivity profiles

of “all” vertices during “all” sessions of a single subject, the goal

is to assign a parcel label lsn for each vertex n of subject s. Even

though a vertex’s connectivity profiles are likely to be different

across fMRI sessions, the vertex’s parcel label was assumed to be

the same across sessions. For example, the individual-specific

areal-level parcellation of the first subject using data from all

available sessions is illustrated in Fig. 1A (last row).

The multiple layers of the areal-level MS-HBM explicitly dif-

ferentiate inter-subject (between-subject) functional connectiv-

ity variability from intra-subject (within-subject) functional con-

nectivity variability (ǫl and σl in Fig. 1A). The connectivity profiles

of two vertices belong to the same parcel will not be identical.

This variability is captured by κl (Fig. 1A). Some model param-

eters (e.g., group-level connectivity profiles) will be estimated

from a training set comprising multi-session rs-fMRI data from

multiple subjects. A new participant (possibly from another

dataset) with single-session fMRI data could then be parcellated

without access to the original training data.

The Markov random field (MRF) spatial prior (Fig. 1A last

row) is important because the observed functional connectivity

profiles of individual subjects are generally very noisy. There-

fore, additional priors were imposed on the parcellation. First,

the spatial smoothness prior V encouraged neighboring vertices

(e.g., PCC and pCun) to be assigned to the same parcels. Second,

the inter-subject spatial variability priorΘl,n denote the probabil-

ity of parcel l occurring at a particular spatial location n. The two

priors (V and Θl,n) are also present in the network-level MS-HBM

(Kong et al. 2019).

However, an additional spatial prior is necessary because of

well-documented long-range connections spanning the cortex.

Therefore, with the original MRF prior (Kong et al. 2019), brain

locations with similar functional connectivity profiles could be

grouped together regardless of spatial proximity. In the case

of network-level MS-HBM, this is appropriate because large-

scale networks are spatially distributed, for example, the default

network spans frontal, parietal, temporal, and cingulate cortices.

In the case of areal-level parcellations, there is the expectation

that a single parcel should not span large spatial distances

(Glasser et al. 2016; Gordon et al. 2016; Schaefer et al. 2018).

Therefore, the areal-level MS-HBM incorporates an additional

prior 8 constraining parcels to be spatially localized (Fig. 1A last

row).

As mentioned in the Introduction, even though there is con-

sensus that individual-specific areal-level parcels should be

spatially localized, there are differing opinions about whether

they should be spatially contiguous. Some studies have enforced

spatially contiguous cortical parcels (Laumann et al. 2015; Gor-

don et al. 2016; Chong et al. 2017) consistent with invasive

studies (Amunts and Zilles 2015). Other studies have estimated

parcels that might comprise multiple spatially close compo-

nents (Glasser et al. 2016; Li, Wang, et al. 2019b). For example,

Glasser and colleagues suggested that area 55b might be split

into two disconnected components in close spatial proximity.

Given the lack of consensus, we consider three possible spatial

localization priors (i.e., 8in Fig. 1A):

1. dMS-HBM. Previous studies have suggested that after reg-

istering cortical folding patterns, interindividual variability

in architectonic locations are different across architectonic

areas (Fischl et al. 2008). One of the most spatially variable

architectonic areas is hOc5, which can be located in an adja-

cent sulcus away from the group-average location (Yeo et al.

2010a, 2010b). This variability corresponded to about 30 mm.

Therefore, similar to Glasser et al. (2016), 8 comprises a spa-

tial localization prior constraining each individual-specific

parcel to be within 30 mm of the group-level Schaefer2018

parcel boundaries. We note that this prior only guarantees

an individual-specific parcel to be spatially localized, but

the parcel might comprise multiple distributed components

(Fig. 1B left panel). We refer to this prior as dMS-HBM.

2. cMS-HBM. In addition to the 30 mm prior from dMS-HBM,

we include a spatial localization prior encouraging vertices

comprising a parcel to not be too far from the parcel center,

as was done in our previous study (Schaefer et al. 2018). If

this spatial contiguity prior is sufficiently strong, then all

individual-specific parcels will be spatially connected (Fig. 1B

middle panel). However, an overly strong prior will result

overly round parcels, which is not biologically plausible (Vogt

2009). To ameliorate this issue, the estimation procedure

startswith a very small weight on this spatial contiguity prior

and then progressively increases the weight to ensure spatial

contiguity. Thus, we refer to this prior as cMS-HBM. We note

that requiring parcels to be spatially connected within an

MRF framework is nontrivial; our approach is significantly

less computationally expensive than competing approaches

(Nowozin and Lampert 2010; Honnorat et al. 2015).

3. gMS-HBM. A well-known areal-level parcellation approach

is the local gradient approach, which detects local abrupt

changes (i.e., gradients) in RSFC across the cortex (Cohen

et al. 2008). Our previous study (Schaefer et al. 2018) has

suggested the utility of combining local gradient (Cohen

et al. 2008; Gordon et al. 2016) and global clustering (Yeo

et al. 2011) approaches for estimating areal-level parcella-

tions. Therefore, we complemented the spatial contiguity

prior in cMS-HBM with a prior based on local gradients in

RSFC,which encouraged adjacent brain locations with gentle

changes in functional connectivity to be grouped into the

same parcel. In practice, we found that the gradient-infused

prior, together with a very weak spatial contiguity prior,

dramatically increased the number of spatially contiguous

parcels (Fig. 1B right panel). Furthermore, the parcels are also

less round than cMS-HBM, which is in our opinion more

biologically plausible. We refer to this prior as gMS-HBM.

A more detailed mathematical explanation of the model can

be found in Supplementary Methods S1. Given a dataset of sub-

jects with multi-session rs-fMRI data, a variational Bayes expec-

tation–maximization (VBEM) algorithm can be used to estimate

the following model parameters (Kong et al. 2019): group-level

parcel connectivity profiles µ
g
l
, the inter-subject functional con-

nectivity variability ǫl, the intra-subject functional connectivity

variability σl, the spatial smoothness prior V, and the inter-

subject spatial variability prior Θl. The individual-specific areal-

level parcellation of a new participant could then be generated

using these estimated group-level priors without access to the

original training data. Furthermore, although themodel requires

multi-session fMRI data for parameter estimation, it can be

applied to a single-session fMRI data from a new participant

(Kong et al. 2019). Details of the VBEM algorithm can be found

in Supplementary Methods S2.
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Characterizing Inter-subject and Intra-Subject
Functional Connectivity Variability

Previous studies have shown that sensory-motor regions exhibit

lower inter-subject, but higher intra-subject functional connec-

tivity variability than association regions (Mueller et al. 2013;

Laumann et al. 2015; Kong et al. 2019). Therefore, we first eval-

uate whether estimates of areal-level inter-subject and intra-

subject variability were consistent with previous work (Fig. 2A).

The HCP dataset was divided into training (N=40), validation

(N=40), and test (N=755) sets. Each HCP participant underwent

two fMRI sessions on two consecutive days.Within each session,

there were two rs-fMRI runs. All four runs were utilized.

The parameters of three MS-HBM variants (dMS-HBM, cMS-

HBM, and gMS-HBM) were estimated. More specifically, the

group-level parcel connectivity profiles µ
g
l
, the inter-subject

RSFC variability ǫl, the intra-subject RSFC variability σl, and

inter-subject spatial variability prior Θl were estimated using

the HCP training set (Fig. 2A). We tuned the “free” parameters

(associated with the spatial smoothness prior V and spatial

localization prior 8) using the HCP validation set (Fig. 2A). The

Schaefer2018 400-region group-level parcellation (Fig. 4A) was

used to initialize the optimization procedure. The final trained

MS-HBMs (Fig. 2A) were used in all subsequent analyses.

Intra-Subject Reproducibility and Inter-subject
Similarity of MS-HBM Parcellations

Within-subject reliability is important for clinical applications

(Shehzad et al. 2009; Birn et al. 2013; Zuo and Xing 2014; Zuo et al.

2019). Having verified that the spatial patterns of inter-subject

and intra-subject functional connectivity variability were con-

sistent with previous work, we further characterized the intra-

subject reproducibility and inter-subject similarity of individual-

specific MS-HBM parcellations (Fig. 2B). The three trained mod-

els (dMS-HBM, cMS-HBM, and gMS-HBM) were applied to the

HCP test set. Individual-specific MS-HBM parcellations were

independently estimated using the first two runs (day 1) and the

last two runs (day 2).

To evaluate the reproducibility of individual-specific parcel-

lations, the Dice coefficient was computed for each parcel from

the two parcellations of each participant:

Dice
(

l1s , l
2
s

)

=
2 × #vertices that overlap between parcels l1s and l2s

#vertices in parcel l1s + #vertices in parcel l2s

where l1s and l2s are parcel l from the two parcellations of subject

s. The Dice coefficient is widely used for comparing parcellation

or segmentation overlap (Destrieux et al. 2010; Sabuncu et al.

2010; Birn et al. 2013; Blumensath et al. 2013; Arslan et al. 2015;

Honnorat et al. 2015; Salehi et al. 2018). The Dice coefficient is

equal to 1 if there is perfect overlap between parcels and zero

if there is no overlap between parcels. The Dice coefficients

were averaged across all participants to provide insights into

regional variation in intra-subject parcel similarity. Finally, the

Dice coefficients were averaged across all parcels to provide an

overall measure of intra-subject parcellation reproducibility.

To evaluate inter-subject parcellation similarity, for each pair

of participants, the Dice coefficient was computed for each

parcel. Since there were two parcellations for each participant,

there were a total of four Dice coefficients for each parcel,

which were then averaged. Furthermore, the Dice coefficients

were averaged across all pairs of participants to provide

insights into regional variation in inter-subject parcel similarity.

Finally, the dice coefficients were averaged across all parcels

to provide an overall measure of inter-subject parcellation

similarity.

To evaluate whether the parameters of MS-HBM algorithms

from one dataset could be generalized to another dataset with

different acquisition protocols and preprocessing pipelines, we

used the HCP model parameters to estimate individual-specific

parcellations in the MSC dataset. More specifically, the MS-HBM

parcellations were independently estimated using the first five

sessions and the last five sessions for each MSC participant

(Fig. 2B).

Geometric Properties of MS-HBM Parcellations

The three MS-HBM variants impose different spatial priors on

areal-level parcellations. To characterize the geometric proper-

ties of the MS-HBM parcels (Fig. 2C), the three trained models

(dMS-HBM, cMS-HBM, and gMS-HBM) were applied to the HCP

test set using all four rs-fMRI runs.We then computed two met-

rics to characterize the geometry of the parcellations. First, for

each parcellation, the number of spatially disjoint components

was computed for each parcel and averaged across all parcels.

Second, for each parcellation, a roundnessmetric was computed

for each parcel and averaged across all parcels. Here, the round-

ness of a parcel is defined as 1 −
#parcel boundary vertices

#vertices contained in the parcel ; a

larger value indicates that a parcel is rounder.

Comparison with Alternative Approaches

Here, we compared the three MS-HBM approaches (dMS-HBM,

cMS-HBM, and gMS-HBM) with three alternative approaches.

The first approach was to apply the Schaefer2018 400-region

group-level parcellation to individual subjects. The second

approach is the well-known gradient-based boundary mapping

algorithm that has been widely utilized to estimate individual-

specific areal-level parcellation (Laumann et al. 2015; Gordon,

Laumann, Gilmore, et al. 2017b). We will refer to this second

approach as “Laumann2015” (https://sites.wustl.edu/peterse

nschlaggarlab/resources). The third approach is the recent

individual-specific areal-level parcellation algorithm of Li,

Wang, et al. (2019b) (http://nmr.mgh.harvard.edu/bid/DownLoa

d.html), which we will refer to as “Li2019.”

Evaluating the quality of individual-specific resting-state

parcellations is difficult because of a lack of ground truth.

Here, we considered two common evaluation metrics (Gordon

et al. 2016; Chong et al. 2017; Schaefer et al. 2018; Kong

et al. 2019): resting-state connectional homogeneity and

task functional inhomogeneity (i.e., uniform task activa-

tion; see below). These metrics encode the principle that if

an individual-specific parcellation captured the areal-level

organization of the individual’s cerebral cortex, then each

parcel should have homogeneous connectivity and function.

Furthermore, we also compared the relative utility of the

different parcellation approaches for RSFC-based behavioral

prediction.

Resting-State Connectional Homogeneity

Resting-state connectional homogeneity was defined as the

averaged Pearson’s correlations between rs-fMRI time courses

of all pairs of vertices within each parcel, adjusted for parcel

size and summed across parcels (Schaefer et al. 2018; Kong

et al. 2019). Higher resting-state homogeneity means that
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Figure 2. Flowcharts of analyses characterizing MS-HBMs. (A) Training MS-HBMs with HCP training and validation sets, as well as characterizing inter-subject and

intra-subject RSFC variability. (B) Exploring intra-subject reproducibility and inter-subject similarity of MS-HBM parcellations using HCP test set and MSC dataset. (C)

Characterizing geometric properties of MS-HBM parcellations using HCP test set. Shaded boxes (HCP test set and MSC dataset) were solely used for evaluation and not

used at all for training or tuning the MS-HBM models.

verticeswithin the same parcel sharemore similar time courses.

Therefore, higher resting-state homogeneity indicates better

parcellation quality.

For each participant from the HCP test set (N=755), we

used one run to infer the individual-specific parcellation and

computed resting-state homogeneity with the remaining three
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runs. For the MSC dataset (N=9), we used one session to infer

the individual-specific parcellation and computed resting-state

homogeneity with the remaining nine sessions (Fig. 3A).

Because MSC participants have large amount of rs-fMRI data

(300 min), we also parcellated each MSC participant using dif-

ferent length of rs-fMRI data (10–150 min) and evaluated the

resting-state homogeneity with the remaining five sessions.

This allowed us to estimate how much the algorithms would

improve with more data (Fig. 3B).

When comparing resting-state homogeneity between parcel-

lations, the effect size (Cohen’s d) of differences and a two-sided

paired-sample t-test (dof = 754 for HCP, dof = 8 for MSC) were

computed.

Task Functional Inhomogeneity

Task functional inhomogeneity was defined as the standard

deviation (SD) of (activation) z-values within each parcel for

each task contrast, adjusted for parcel size and summed across

parcels (Gordon, Laumann, Gilmore, et al. 2017b; Schaefer et al.

2018). Lower task inhomogeneity means that activation within

each parcel is more uniform. Therefore, lower task inhomogene-

ity indicates better parcellation quality. The HCP task-fMRI data

consisted of seven task domains: social cognition, motor, gam-

bling, working memory, language processing, emotional pro-

cessing, and relational processing (Barch et al. 2013). The MSC

task-fMRI data consisted of three task domains: motor, mixed,

and memory (Gordon, Laumann, Gilmore, et al. 2017b). Each

task domain containedmultiple task contrasts.All available task

contrasts were utilized.

For each participant from the HCP test set (N=755) and

MSC dataset (N=9), all rs-fMRI sessions were used to infer the

individual-specific parcellation (Fig. 3C). The individual-specific

parcellation was then used to evaluate task inhomogeneity

for each task contrast and then averaged across all available

contrasts within a task domain, resulting in a single task

inhomogeneity measure per task domain. When comparing

between parcellations, we averaged the task inhomogeneity

metric across all contrasts within a task domain before the

effect size (Cohen’s d) of differences and a two-sided paired-

sample t-test (dof = 754 for HCP, dof = 8 for MSC) were computed

for each domain.

Methodological Considerations

It is important to note that a parcellation with more parcels

tends to have smaller parcel size, leading to higher resting-

state homogeneity and lower task inhomogeneity. For example,

if a parcel comprised two vertices, then the parcel would

be highly homogeneous. In our experiments, the MS-HBM

algorithms and Li2019 were initialized with the 400-region

Schaefer2018 group-level parcellation, resulting in the same

number of parcels as Schaefer2018, that is, 400 parcels. This

allowed for a fair comparison among MS-HBMs, Li2019, and

Schaefer2018.

However, parcellations estimated by Laumann2015 had a

variable number of parcels across participants. Furthermore,

Laumann2015 parcellations also had a significant number of

vertices between parcels that were not assigned to any parcel,

which has the effect of artificially increasing resting homogene-

ity and decreasing task inhomogeneity. Therefore, when com-

paring MS-HBM with Laumann2015 using resting-state homo-

geneity (Fig. 3A) and task inhomogeneity (Fig. 3C), we performed

a post hoc processing of MS-HBM parcellations to match the

number of parcels and unlabeled vertices of Laumann2015 par-

cellations (Supplementary Methods S3).

In addition, the Laumann2015 approach yielded different

numbers of parcelswithin an individualwith different lengths of

rs-fMRI data. Therefore, Laumann2015 was also excluded from

the analysis of out-of-sample resting-state homogeneity with

different lengths of rs-fMRI data (Fig. 3B).

RSFC-Based Behavioral Prediction

Most studies utilized a group-level parcellation to derive RSFC

for behavioral prediction (Dosenbach et al. 2010; Finn et al.

2015; Dubois et al. 2018; Weis et al. 2020; Li, Kong, et al. 2019a).

Here, we investigated if RSFC derived from individual-specific

parcellations can improve behavioral prediction performance.

As before (He et al. 2020; Kong et al. 2019; Li, Kong, et al. 2019a),

we considered 58 behavioral phenotypes measuring cognition,

personality, and emotion from the HCP dataset. Three partici-

pants were excluded from further analyses because they did not

have all behavioral phenotypes, resulting in a final set of 752 test

participants.

The different parcellation approaches were applied to each

HCP test participant using all four rs-fMRI runs (Fig. 3D). The Lau-

mann2015 approach yielded parcellations with different num-

bers of parcels across participants, so there was a lack of inter-

subject parcel correspondence. Therefore, we were unable to

perform behavioral prediction with the Laumann2015 approach,

so Laumann2015 was excluded from this analysis.

Given 400-region parcellations from different approaches

(Schaefer2018; Li2019; dMS-HBM, cMS-HBM, gMS-HBM), func-

tional connectivity was computed by correlating averaged

time courses of each pair of parcels, resulting in a 400×400

RSFC matrix for each HCP test participant (Fig. 3D). Consistent

with our previous work (He et al. 2020; Kong et al. 2019; Li,

Wang, et al. 2019b), kernel regression was utilized to predict

each behavioral measure in individual participants. Suppose

y is the behavioral measure (e.g., fluid intelligence) and FC

is the functional connectivity matrix of a test participant.

In addition, suppose yi is the behavioral measure (e.g., fluid

intelligence) and FCi is the individual-specific functional

connectivity matrix of the ith training participant. Then

kernel regression would predict the behavior of the test

participant as the weighted average of the behaviors of the

training participants: y ≈
∑

i∈training setSimilarity(FCi, FC)yi. Here,

Similarity(FCi, FC) is the Pearson’s correlation between the

functional connectivity matrices of the ith training participant

and the test participant. Because the functional connectivity

matrices were symmetric, only the lower triangular portions of

the matrices were considered when computing the correlation.

Therefore, kernel regression encodes the intuitive idea that

participants with more similar RSFC patterns exhibited similar

behavioral measures.

In practice, an l2-regularization term (i.e., kernel ridge regres-

sion) was included to reduce overfitting (Supplementary Meth-

ods S4; Murphy 2012). We performed 20-fold cross-validation

for each behavioral phenotype. Family structure within the HCP

dataset was taken into account by ensuring participants from

the same family (i.e., with either the same mother ID or father

ID) were kept within the same fold and not split across folds.

For each test fold, an inner-loop 20-fold cross-validation was

repeatedly applied to the remaining 19 folds with different
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Figure 3. Flowcharts of comparisons with other algorithms. (A) Comparing out-of-sample resting-state homogeneity across different parcellation approaches applied

to a single rs-fMRI session. (B) Comparing out-of-sample resting-state homogeneity across different parcellation approaches applied to different lengths of rs-fMRI

data. (C) Comparing task inhomogeneity across different approaches. (D) Comparing RSFC-based behavioral prediction accuracies across different approaches. Across

all analyses, MS-HBM parcellations were estimated using the trained models from Figure 2A. We remind the reader that the trained MS-HBMs were estimated using

the HCP training and validation sets (Fig. 2A), which did not overlap with the HCP test set utilized in the current set of analyses. In the case of analyses (A) and (B),

only a portion of rs-fMRI data was used to estimate the parcellations. The remaining rs-fMRI data were used to compute out-of-sample resting-state homogeneity. For

analyses (C) and (D), all available rs-fMRI data were used to estimate the parcellations. Finally, we note that the local gradient approach (Laumann2015) does not yield

a fixed number of parcels. Thus, the number of parcels is variable within an individual with different lengths of rs-fMRI data, so Laumann2015 was not considered for

analysis B. Similarly, the number of parcels is different across participants, so the sizes of the RSFCmatrices are different across participants. Therefore, Laumann2015

was also not utilized for analysis D.
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regularization parameters. The optimal regularization parame-

ter from the inner-loop cross-validation was then used to pre-

dict the behavioral phenotype in the test fold. Accuracy was

measured by correlating the predicted and actual behavioral

measure across all participants within the test fold (Finn et al.

2015; Kong et al. 2019; Li, Wang, et al. 2019b). By repeating the

procedure for each test fold, each behavior yielded 20 correla-

tion accuracies, which were then averaged across the 20 folds.

Because a single 20-fold cross-validation might be sensitive

to the particular split of the data into folds (Varoquaux et al.

2017), the above 20-fold cross-validationwas repeated 100 times.

The mean accuracy and SD across the 100 cross-validations

will be reported. When comparing between parcellations, a cor-

rected resampled t-test for repeated k-fold cross-validation was

performed (Bouckaert and Frank 2004). We also repeated the

analyses using coefficient of determination (COD) as a metric

of prediction performance.

As certain behavioral measures are known to correlate with

motion (Siegel et al. 2017), we regressed out age, sex, framewise

displacement, DVARS, body mass index, and total brain volume

from the behavioral data before kernel ridge regression. To pre-

vent any information leak from the training data to test data,

the nuisance regression coefficients were estimated from the

training folds and applied to the test fold.

Code and Data Availability

Code for this work is freely available at the GitHub repository

maintained by the Computational Brain Imaging Group (https://

github.com/ThomasYeoLab/CBIG). The Schaefer2018 group-

level parcellation and code are available here (https://github.

com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_

parcellation/Schaefer2018_LocalGlobal), while the areal-level

MS-HBM parcellation code is available here (https://github.com/

ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parce

llation/Kong2022_ArealMSHBM). We have also provided trained

MS-HBM parameters at different spatial resolutions, ranging

from 100 to 1000 parcels.

We note that the computational bottleneck for gMS-HBM is

the computation of the local gradients (Laumann et al. 2015).

We implemented a faster and less memory-intensive version of

the local gradient computation by subsampling the functional

connectivity matrices (Supplementary Methods S1.3). Comput-

ing the gradient map of a single HCP run requires 15 min and

3 GB of RAM, compared with 4 h and 40 GB of RAM in the

original version. The resulting gradient maps were highly sim-

ilar to the original gradient maps (r=0.97). The faster gradient

code can be found here (https://github.com/ThomasYeoLab/CBI

G/tree/master/utilities/matlab/speedup_gradients).

The individual-specific parcellations for the HCP and MSC,

together with the associated RSFC matrices, are available here

(https://balsa.wustl.edu/study/show/Pr8jD and https://github.

com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_

parcellation/Kong2022_ArealMSHBM).

Results

Overview

Three variations of the MS-HBM with different contiguity

constraints (Fig. 1) were applied to two multi-session rs-fMRI

datasets to ensure that the approaches were generalizable

across datasets with significant acquisition and processing

differences. After confirming previous literature (Mueller et al.

2013; Laumann et al. 2015; Kong et al. 2019) that inter-subject and

intra-subject RSFC variabilities were different across the cortex,

we then established that the MS-HBM algorithms produced

individual-specific areal-level parcellations with better quality

than other approaches. Finally, we investigated whether RSFC

derived from MS-HBM parcellations could be used to improve

behavioral prediction.

Sensory-Motor Cortex Exhibits Lower Inter-Subject but
Higher Intra-Subject Functional Connectivity Variability
Than Association Cortex

The parameters of gMS-HBM, dMS-HBM and cMS-HBM were

estimated using the HCP training set. Supplementary Figure S1

shows the inter-subject RSFC variability (ǫl) and intra-subject

RSFC variability (σl) overlaid on corresponding Schaefer2018

group-level parcels. The pattern of inter-subject and intra-

subject RSFC variability was consistent with previous work

(Mueller et al. 2013; Laumann et al. 2015; Kong et al. 2019). More

specifically, sensory-motor parcels exhibited lower inter-subject

RSFC variability than association cortical parcels. On the other

hand, association cortical parcels exhibited lower intra-subject

RSFC variability than sensory-motor parcels.

Individual-Specific MS-HBM Parcellations Exhibit High
Intra-Subject Reproducibility and Low Inter-Subject
Similarity

To assess intra-subject reproducibility and inter-subject similar-

ity, the three MS-HBM variants were tuned on the HCP train-

ing and validation sets and then applied to the HCP test set.

Individual-specific parcellations were generated by using rs-

fMRI data from day 1 (first 2 runs) and day 2 (last 2 runs)

separately for each participant. All 400 parcels were present in

99% of the participants.

Figure 4 shows the inter-subject and intra-subject spatial

similarity (Dice coefficient) of parcels from the three MS-HBM

variants in the HCP test set. Intra-Subject reproducibility was

greater than inter-subject similarity across all parcels. Con-

sistent with our previous work on individual-specific cortical

networks (Kong et al. 2019), sensory-motor parcels were more

spatially similar across participants than association cortical

parcels. Sensory-motor parcels also exhibited greater within-

subject reproducibility than association cortical parcels.

Overall, gMS-HBM, dMS-HBM, and cMS-HBM achieved intra-

subject reproducibility of 81.0%, 80.4%, and 76.1%, respectively,

and inter-subject similarity of 68.2%, 68.1%, and 63.9%, respec-

tively. We note that these metrics cannot be easily used to

judge the quality of the parcellations. For example, gMS-HBM

has higher intra-subject reproducibility and higher inter-subject

similarity than cMS-HBM, so we cannot simply conclude that

one is better than the other.

Figure 5A and Supplementary Figure S2 show the gMS-HBM

parcellations of four representative HCP participants. Supple-

mentary Figures S3 and S4 show the dMS-HBM and cMS-HBM

parcellations of the same HCP participants. Consistent with pre-

vious studies of individual-specific parcellations (Glasser et al.

2016; Chong et al. 2017; Gordon, Laumann, Gilmore, et al. 2017b;

Salehi et al. 2018; Seitzman et al. 2019; Li,Wang, et al. 2019b), par-

cel shape, size, location, and topology were variable across par-

ticipants. Parcellations were highly similar within each partic-

ipant with individual-specific parcel features highly preserved
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Figure 4. Individual-specific MS-HBM parcellations show high within-subject reproducibility and low across-subject similarity in the HCP test set. (A) The 400-

region Schaefer2018 group-level parcellation. (B) Inter-Subject spatial similarity for different parcels. (C) Intra-Subject reproducibility for different parcels. Yellow color

indicates higher overlap. Red color indicates lower overlap. Individual-specific MS-HBM parcellations were generated by using day 1 (first two runs) and day 2 (last two

runs) separately for each participant. Sensory-motor parcels exhibited higher intra-subject reproducibility and inter-subject similarity than association parcels.

across sessions (Fig. 5B). Similar resultswere obtainedwith dMS-

HBM and cMS-HBM (Fig. 5B).

The trained MS-HBM from the HCP dataset was also applied

to the MSC dataset. The MS-HBM parcellations of four repre-

sentative MSC participants are shown in Supplementary Figures

S5–S7. Similar to theHCP dataset, the parcellations also captured

unique features thatwere replicable across the first five sessions

and the last five sessions. Overall, gMS-HBM, dMS-HBM, and

cMS-HBM achieved intra-subject reproducibility of 75.5%, 73.9%,

and 67.8%, respectively, and inter-subject similarity of 50.6%,

47.1%, and 42.9%, respectively.

Geometric Properties of MS-HBM Parcellations

In theHCP test set, the average number of spatially disconnected

components per parcel was 1.95± 0.29 (mean±SD), 1±0, and

1.06±0.07 for dMS-HBM, cMS-HBM, and gMS-HBM, respectively.

In the case of dMS-HBM, the maximum number of spatially
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Figure 5. MS-HBM parcellations exhibit individual-specific features that are replicable across sessions. (A) The 400-region individual-specific gMS-HBM parcellations

were estimated using rs-fMRI data from day 1 and day 2 separately for each HCP test participant. Right hemisphere parcellations are shown in Supplementary Figure S2.

See Supplementary Figures S3 and S4 for dMS-HBM and cMS-HBM. (B) Replicable individual-specific parcellation features in a single HCP test participant for dMS-HBM,

cMS-HBM, and gMS-HBM.

disconnected components (across all participants and parcels)

was 11 (Supplementary Fig. S8). In the case of gMS-HBM,

the maximum number of spatially disconnected components

(across all participants and parcels) was 3 (Supplementary Fig.

S8). On the other hand, the average roundness of the parcel-

lations was 0.56± 0.02 (mean±SD), 0.60± 0.01, and 0.58± 0.02

for dMS-HBM, cMS-HBM, and gMS-HBM, respectively. Overall,

gMS-HBM parcels have much fewer spatially disconnected
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components than dMS-HBM, while achieving intermediate

roundness between dMS-HBM and cMS-HBM.

Individual-Specific MS-HBM Parcels Exhibit Higher
Resting-State Homogeneity Than Other Approaches

Individual-specific areal-level parcellations were estimated

using a single rs-fMRI session for each HCP test participant

and each MSC participant. Resting-state homogeneity was

evaluated using leave-out sessions in the HCP (Fig. 6A,B) and

MSC (Fig. 6C,D and Supplementary Fig. S9) datasets.We note that

comparisons with Laumann2015 are shown on separate plots

(Fig. 6B,D) because Laumann2015 yielded different number of

parcels across participants. Therefore, we matched the number

of MS-HBM parcels to Laumann2015 for each participant for fair

comparison (see Methods).

Across both HCP and MSC datasets, the MS-HBM algorithms

achieved better homogeneity than the group-level parcellation

(Schaefer2018) and two individual-specific areal-level parcel-

lation approaches (Laumann2015 and Li2019). Compared with

Schaefer2019, the three MS-HBM variants achieved an improve-

ment ranging from 3.4% to 7.5% across the two datasets (average

improvement=5.2%, average Cohen’s d=3.8, largest P=1.9e−6).

Compared with Li2019, the three MS-HBM variants achieved

an improvement ranging from 2.2% to 4.9% across the two

datasets (average improvement=3.4%, average Cohen’s d=3.9,

largest P=5.5e−6). Compared with Laumann2015, the three MS-

HBM variants achieved an improvement ranging from 6.3% to

7.8% across the two datasets (average improvement=6.7%, aver-

age Cohen’s d=7.5, largest P=1.2e−9). All reported P values were

significant after correcting for multiple comparisons with false

discovery rate (FDR) q< 0.05.

Among the three MS-HBM variants, cMS-HBM achieved

the highest homogeneity, while dMS-HBM was the least

homogeneous. In the HCP dataset, cMS-HBM achieved an

improvement of 0.19% (Cohen’s d=0.5, P=3.5e−38) over gMS-

HBM, and gMS-HBM achieved an improvement of 0.76% (Cohen’s

d=2.5, P=3.5e−38) over dMS-HBM. In theMSC dataset, cMS-HBM

achieved an improvement of 1.1% (Cohen’s d=3.5, P=6.3e−6)

over gMS-HBM, and gMS-HBM achieved an improvement of 0.7%

(Cohen’s d=2.6, P=6.1e−5) over dMS-HBM. All reported P values

were significant after correcting for multiple comparisons with

FDR q< 0.05.

Individual-specific parcellations were estimated with

increasing length of rs-fMRI data in the MSC dataset. Resting-

state homogeneity was evaluated using leave-out sessions

(Fig. 7A and Supplementary Fig. S10).Wenote that Laumann2015

parcellations had different number of parcels with different

length of rs-fMRI data. Therefore, the resting-state homogeneity

of Laumann2015 parcellations was not comparable across

different length of rs-fMRI data, so the results were not

shown. Because Schaefer2018 is a group-level parcellation, the

parcellation stays the same regardless of the amount of data.

Therefore, the performance of the Schaefer2018 group-level

parcellation remained constant regardless of the amount of

data. Surprisingly, the performance of the Li2019 individual-

specific parcellation approach also remained almost constant

regardless of the amount of data. One possible reason is that

Li2019 constrained individual-specific parcels to overlap with

group-level parcels. This might be an overly strong constraint,

which could not be overcome with more rs-fMRI data. By

contrast, the MS-HBM algorithms (dMS-HBM, cMS-HBM, and

gMS-HBM) exhibited higher homogeneity with increased length

of rs-fMRI data, suggesting that MS-HBM models were able to

improve with more rs-fMRI data.

Furthermore, using just 10 min of rs-fMRI data, the MS-

HBM algorithms achieved better homogeneity than Lau-

mann2015 and Li2019 using 150 min of rs-fMRI data (Fig. 7B

and Supplementary Fig. S10). More specifically, compared with

Laumann2015 using 150 min of rs-fMRI data, dMS-HBM, cMS-

HBM, and gMS-HBM using 10 min of rs-fMRI data achieved

an improvement of 2.6% (Cohen’s d=2.7, P=3.6e−5), 6.2%

(Cohen’s d=5.5, P=1.9e−7), and 5.6% (Cohen’s d=6.1, P=2.3e−7),

respectively. Compared with Li2019 using 150 min of rs-fMRI

data, dMS-HBM, cMS-HBM, and gMS-HBM using 10 min of rs-

fMRI data achieved an improvement of 0.4% (Cohen’s d=0.4,

not significant), 2.4% (Cohen’s d=1.9, P=4.3e−4), and 1.5%

(Cohen’s d=1.7, P=1.0e−3), respectively. All reported P values

were significant after correcting for multiple comparisons with

FDR q< 0.05.

Individual-Specific MS-HBM Parcels Exhibit Lower
Task Inhomogeneity Than Other Approaches

Individual-specific parcellations were estimated using all rs-

fMRI sessions from the HCP test set and MSC dataset. Task

inhomogeneity was evaluated using task fMRI. Figure 8 and

Supplementary Figure S11 show the task inhomogeneity of

all approaches for all task domains in the MSC and HCP

datasets, respectively. Compared with Schaefer2019, the three

MS-HBM variants achieved an improvement ranging from

0.9% to 5.9% across all task domains and datasets (average

improvement=3.2%, average Cohen’s d=2.4, largest P=2.0e−3).

Compared with Li2019, the three MS-HBM variants achieved an

improvement ranging from 0.8% to 5.0% across all task domains

and datasets (average improvement=2.7%, average Cohen’s

d=2.2, largest P=1.8e−3). Compared with Laumann2015, the

three MS-HBM variants achieved an improvement ranging from

1.9% to 28.1% across all task domains and datasets (average

improvement=6.7%, average Cohen’s d=2.3, largest P=0.017).

All reported P values were significant after correcting for

multiple comparisons with FDR q< 0.05. In the case of MSC,

these improvements were observed in almost every single

participant across all tasks (Fig. 8).

Among the three MS-HBM variants, cMS-HBM achieved

the best task inhomogeneity, while dMS-HBM achieved the

worst task inhomogeneity. Compared with gMS-HBM, cMS-HBM

achieved an improvement ranging from 0.03% to 0.92% across

all task domains and datasets (average improvement=0.3%,

average Cohen’s d=0.6, largest P=0.013). Compared with

dMS-HBM, gMS-HBM achieved an improvement ranging from

0.06% to 1.1% across all task domains and datasets (average

improvement=0.5%, average Cohen’s d=1.1, largest P=1.2e−3).

All reported P values were significant after correcting for

multiple comparisons with FDR q< 0.05.

Functional Connectivity of Individual-Specific MS-HBM
Parcels Improves Behavioral Prediction

Individual-specific parcellations were estimated using all rs-

fMRI sessions from the HCP test set. The RSFC of the individual-

specific parcellationswas used for predicting 58 behavioralmea-

sures. We note that the number of parcels was different across

participants for Laumann2015, so Laumann2015 could not be

included for this analysis.
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Figure 6.MS-HBM parcellations achieved better out-of-sample resting-state homogeneity than other approaches. (A) The 400-region individual-specific parcellations

were estimated using a single rs-fMRI session and resting-state homogeneity was computed on the remaining sessions for each HCP test participant. Error bars

correspond to standard errors. (B) Same as (A) except that Laumann2015 allowed different number of parcels across participants, so we matched the number of MS-

HBM parcels to Laumann2015 for each participant. Therefore, the numbers for (A) and (B) were not comparable. (C) The 400-region individual-specific parcellations

were estimated using a single rs-fMRI session and resting-state homogeneity was computed on the remaining sessions for eachMSC participant. Each circle represents

one MSC participant. Dash lines connect the same participants. (D) Same as (C) except that Laumann2015 allowed different number of parcels across participants, so

wematched the number of MS-HBM parcels to Laumann2015 for each participant. Results for dMS-HBM and cMS-HBM in theMSC dataset are shown in Supplementary

Figure S9.

Supplementary Tables S2 and S3 summarize the average

prediction accuracies (Pearson’s correlation) for different sets

of behavioral measures, including cognitive, personality, and

emotion measures. Overall, individual-specific functional con-

nectivity strength from MS-HBM parcellations achieved bet-

ter prediction performance than other approaches. In general,

gMS-HBM achieved better prediction performance than dMS-

HBM and cMS-HBM, but differences were not significant.

Figure 9A shows the average prediction accuracies of all 58

behaviors across different parcellation approaches. Compared

with Schaefer2018 and Li2019, gMS-HBM achieved improve-

ments of 16% (P=5.0e−4) and 18% (P=5.4e−4), respectively.
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Figure 7.MS-HBM parcellations achieved better out-of-sample resting-state homogeneity with less amount of data. (A) The 400-region individual-specific parcellations

were estimated using different lengths of rs-fMRI data for each MSC participant. Resting-state homogeneity was evaluated using leave-out sessions. Error bars

correspond to standard errors. (B) The 400-region individual-specific parcellations were estimated for each MSC participant using 10 min of rs-fMRI data for gMS-HBM

and 150 min of rs-fMRI data for Li2019. Each circle represents one MSC participant. Dash lines connect the same participants. (C) Same as (B) except that Laumann2015

yielded different number of parcels for each participant, so we matched the number of MS-HBM parcels accordingly for each participant. Results for dMS-HBM and

cMS-HBM are shown in Supplementary Figure S10.

Both P values remained significant after correcting for multiple

comparisons with FDR q< 0.05. Compared with cMS-HBM

and dMS-HBM, gMS-HBM achieved an improvement of 5.5%

and 3.4%, respectively. However, differences among MS-HBM

variants were not significant.

We note that some behavioral measures were predicted

poorly by all approaches. This is not unexpected because we do

not expect all behavioral measures to be predictable with RSFC.

Therefore, we further consider a subset of behavioral measures

that could be predicted well by at least one approach. Figure 9B

shows the average prediction accuracies of 36 behaviors with

accuracies higher than 0.1 for at least one approach (“36

behaviors >0.1”). Compared with Schaefer2018 and Li2019,

gMS-HBM achieved improvements of 13% (P=2.2e−4) and 13%

(P=4.5e−4), respectively. All P values remained significant

after correcting for multiple comparisons with FDR q< 0.05.

Differences among MS-HBM variants were again not significant.

Similar conclusions were obtained with COD instead of

correlations (Fig. 10 and Supplementary Tables S4 and S5).

Task Performance Measures Are More Predictable Than
Self-Reported Measures

To explore which behavioral measures can be consistently

predicted well regardless of parcellations, we ordered the 58

behavioral measures based on averaged prediction accuracies
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Figure 8. MS-HBM parcellations achieved better task inhomogeneity in the MSC dataset. (A) The 400-region individual-specific parcellations were estimated using

all resting-state fMRI sessions. Task inhomogeneity was evaluated using task fMRI. Task inhomogeneity was then defined as the SD of task activation within each

parcel and then averaged across all parcels and contrasts within each behavioral domain. Lower value indicates better task inhomogeneity. Each circle represents one

MSC participant. Dash lines connect the same participants. (B) Same as (A) except that Laumann2015 yielded different number of parcels for each participant, so we

matched the number of MS-HBM parcels accordingly for each participant. HCP results are shown in Supplementary Figure S11.

Figure 9.MS-HBM achieves the best behavioral prediction performance as measured by Pearson’s correlation. (A) Average prediction accuracies (Pearson’s correlation)

of all 58 behavioral measures. Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR

(not SD). Circle indicates mean. dMS-HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies of r=0.1083±0.0031 (mean±SD), 0.1062±0.0031, and

0.1111±0.0031, respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction accuracies of r=0.0960±0.0031 and 0.0944±0.0031, respectively.

(B) Average prediction accuracies (Pearson’s correlation) of 36 behavioral measures with accuracies (Pearson’s correlation) higher than 0.1 for at least one approach (“36

behaviors > 0.1”). dMS-HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies of r=0.1630±0.0034 (mean±SD), 0.1590±0.0035, and 0.1656±0.0036,

respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction accuracies of r=0.1442±0.0036 and 0.1444±0.0035, respectively.

(Pearson’s correlation) across Schaefer2018, Li2019, and the three

MS-HBM variants (Fig. 11B). Our previous studies (Liégeois et al.

2019; Li, Kong, et al. 2019a) have suggested that “self-reported”

and “task performance” measures might be differentially

predicted under different conditions. Using the same classi-

fication of behavioral measures (Liégeois et al. 2019; Li, Kong,

et al. 2019a), we found that the average prediction accuracies of

self-reported measures and task performance measures were
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Figure 10. MS-HBM achieves the best behavioral prediction performance as measured by COD. (A) Average prediction accuracies (COD) of all 58 behavioral measures.

Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR (not SD). Circle indicates mean. dMS-

HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies (COD)=0.0147±0.0009 (mean±SD), 0.0149±0.0009, and 0.0156±0.0010, respectively. On the

other hand, Schaefer2018 and Li2019 achieved average prediction accuracies (COD)=0.0120±0.0009 and 0.0121±0.0009, respectively. (B) Average prediction accuracies

(COD) of 36 behavioral measures with accuracies (Pearson’s correlation) greater than 0.1 for at least one approach (“36 behaviors > 0.1”). dMS-HBM, cMS-HBM, and gMS-

HBM achieved average prediction accuracies (COD)=0.0252±0.0014 (mean±SD), 0.0257± 0.0014, and 0.0266±0.0014, respectively. On the other hand, Schaefer2018 and

Li2019 achieved average prediction accuracies (COD)=0.0212±0.0014 and 0.0213±0.0014, respectively.

r=0.0890± 0.0048 and r=0.1181± 0.0033, respectively (Fig. 11A),

suggesting that on average, task performance measures were

more predictable than self-reported measures (P=0.042).

Discussion

In this manuscript, we demonstrated the robustness of the

MS-HBM areal-level parcellation approach. Compared with a

group-level parcellation and two state-of-the-art individual-

specific areal-level parcellation approaches, we found that MS-

HBM parcels were more homogeneous during resting-state

while also exhibiting more uniform task activation patterns

(i.e., lower task inhomogeneity). Furthermore, RSFC derived

from individual-specific MS-HBM parcellations achieved better

behavioral prediction performance than other approaches.

Among the three MS-HBM variants, the cMS-HBM exhibited

the best resting homogeneity and task inhomogeneity,while the

gMS-HBM exhibited the best behavioral prediction performance.

Interpretation of the MS-HBM Areal-Level Parcellations

Previous studies have estimated around 300–400 classically

defined cortical areas in the human cerebral cortex (Van Essen,

Glasser, et al. 2012b). Therefore, various groups (including ours)

have most frequently utilized the 400-region Schaefer group-

level parcellation (Varikuti et al. 2018; Franzmeier et al. 2019;

Kebets et al. 2019; Murphy et al. 2020; Orban et al. 2020). Other

studies have opted to utilize different resolutions of the Schaefer

group-level parcellation, for example, 100 regions (Chin Fatt

et al. 2019), 200 regions (Anderson et al. 2020; Faskowitz et al.

2020), and 800 regions (Valk et al. 2020). Despite our focus on the

400-region areal-level parcellations in the current study, we do

not believe that there is an optimal number of cortical parcels

because of the multi-resolution organization of the cerebral

cortex (Churchland and Sejnowski 1988; van den Heuvel and

Yeo 2017). Indeed, given the heterogeneity of cortical areas (Kaas

1987; Amunts and Zilles 2015), cortical areas might be further

subdivided into meaningful computational subunits.

More specifically and consistent with other studies, our

areal-level parcels likely captured subareal features such as

somatotopy and visual eccentricity (Gordon et al. 2016; Schaefer

et al. 2018). Ultimately, the choice of parcellation resolution

might depend on the specific application. For example, a recent

study suggested that brain–behavior relationships are scale-

dependent (Betzel et al. 2019). Furthermore, a higher resolution

parcellation might be computationally infeasible for certain

analysis, such as edge-centric network analysis (Faskowitz et al.

2020). Therefore, we have provided trained MS-HBM at different

spatial resolutions, ranging from 100 to 1000 parcels. It is worth

noting that because our parcels do not correspond to traditional

cortical areas (Kaas 1987; Amunts and Zilles 2015), we have been

careful to avoid the term “areas.” Insteadwe use the term “areal-

level parcellation” when referring to the entire parcellation and

“parcels” when referring to individual regions throughout the

manuscript.

Several studies have shown that brain networks reconfigure

during tasks (Cole et al. 2014; Krienen et al. 2014; Salehi et al.

2019). Consequently, some have questioned the existence of a

single individual-specific areal-level parcellation that general-

izes across resting and task states (Salehi et al. 2019). While we

do not contest the results of Salehi and colleagues, we have a

very different interpretation. Cortical areas (e.g., V1) are concep-

tualized as representing stable computational units (Felleman

and Van Essen 1991). Consequently, their boundaries should

remain the same regardless of transient task states across the

span of a few days, even if long-term experiences can potentially
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Figure 11.Task performancemeasureswere predicted better than self-reportedmeasures across different parcellation approaches. Prediction accuracieswere averaged

across all parcellation approaches (three MS-HBM variants, Schaefer2018, and Li2019). (A) Prediction accuracies averaged across HCP task-performancemeasures (gray)

andHCP self-reportedmeasures (white). (B) Behavioralmeasureswere ordered based on average prediction accuracies.Gray color indicates task performancemeasures.

White color indicates self-reported measures. Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate

1.5 IQR (not SD). Circle indicates mean. Designation of behavioral measures into “self-reported” and “task-performance”measures followed previous studies (Liégeois

et al. 2019; Li et al. 2019a).
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shape the development and formation of cortical areas (Arcaro

et al. 2017; Gomez et al. 2019). Thus, the results of Salehi and

colleagues do not rule out the plausibility of estimating a stable

individual-level areal-level parcellation with rs-fMRI data alone.

Rather, Salehi and colleagues motivate the need to estimate

areal-level parcellations jointly from rs-fMRI, task-fMRI, and

other modalities (Glasser et al. 2016; Eickhoff, Constable, et al.

2018a) in order to achieve invariance across brain states. We

leave this for future work.

MS-HBM Areal-Level Parcellations Are More
Homogeneous Than Other Approaches in
Out-of-Sample Resting- and Task-fMRI

Dealingwith RSFCmatrices at the original voxel or vertex resolu-

tion is difficult because of the high-dimensionality. Thus, areal-

level brain parcellations have been widely utilized as a dimen-

sionality reduction tool (Eickhoff, Constable, et al. 2018a), for

example, averaged time course of a parcel is used to represent

the entire parcel (Varoquaux and Craddock 2013; Finn et al. 2015;

Rosenberg et al. 2016). For the dimensionality reduction to be

valid, vertices within each areal-level parcel should have similar

time courses, that is, high resting-state homogeneity (Gordon

et al. 2016; Schaefer et al. 2018). Across two datasets (HCP and

MSC), we found that MS-HBM areal-level parcellations exhibited

higher resting-state homogeneity than three other approaches,

suggesting that rs-fMRI time courses are more similar within

MS-HBM parcels (Figs 6 and 7).

Furthermore, if an individual-specific areal-level parcellation

accurately captures the functional brain organization of a par-

ticipant, one might expect task activation to be uniform within

parcels, that is, low task inhomogeneity (Gordon, Laumann,

Gilmore, et al. 2017b; Schaefer et al. 2018). We found that MS-

HBM parcellations achieved better task inhomogeneity than

other approaches in both HCP and MSC datasets (Fig. 8 and

Supplementary Fig. S11). Given the strong link between task-

fMRI and rs-fMRI (Smith et al. 2009; Mennes et al. 2010; Cole et al.

2014; Krienen et al. 2014; Bertolero et al. 2015; Yeo et al. 2015;

Tavor et al. 2016), this is perhaps not surprising.

Intriguingly, the improvement in task inhomogeneity varied

significantly across task domains (Fig. 8 and Supplementary Fig.

S11)with themotor task exhibiting the least task inhomogeneity

improvement for both HCP and MSC datasets. Given that the

motor domain exhibited one of the lowest task inhomogeneity

across behavioral domains, there might not be much room

for improvement. Furthermore, sensory-motor parcels exhib-

ited low inter-subject variation in terms of location and spatial

topography (Fig. 4B), so different approachesmight perform sim-

ilarlywell.Other possible reasonsmight include variation in task

design and duration.

It is worth pointing out that even though MSC dataset only

contained nine participants, MS-HBM parcellations exhibited

better resting homogeneity and task inhomogeneity in every

single participant (Figs 6–8 and Supplementary Figures S9–S11).

This suggests that MS-HBM parameters estimated from HCP

were effective in MSC despite significant acquisition and pre-

processing differences.

MS-HBM Works Well Even with Only 10 min of rs-fMRI
Data

It is well known that longer scan durations can improve the

reliability of RSFC measures (Van Dijk et al. 2010; Xu et al. 2016;

Kong et al. 2019). Recent studies have suggested that at least

20–30 min of data is needed to obtain reliable measurements

(Laumann et al. 2015; O’Connor et al. 2017; Gordon, Laumann,

Gilmore, et al. 2017b). Consistent with previous work, we found

that resting-state homogeneity of individual-specific areal-level

parcellations continued to improve with more data (Fig. 7 and

Supplementary Fig. S10). The improvements started to plateau

around 40–50 min of data.

Although MS-HBM required multi-session rs-fMRI data for

training, the models could be applied to a single rs-fMRI ses-

sion from a new dataset. More specifically, in the MSC dataset,

we showed that MS-HBM areal-level parcellations estimated

with only 10 min of rs-fMRI data exhibited better resting-state

homogeneity than two other approaches using 150 min of data

(Gordon, Laumann, Gilmore, et al. 2017b; Li, Wang, et al. 2019b).

RSFC of Individual-Specific MS-HBM Parcellations
Improves Behavioral Prediction

A vast body of literature has shown that functional connectiv-

ity derived from group-level parcellations can be utilized for

behavioral prediction (Hampson et al. 2006; Finn et al. 2015;

Smith et al. 2015; Yeo et al. 2015; Rosenberg et al. 2016; He et al.

2020). However, there is a preponderance of evidence that group-

level parcellations obscure individual-specific topographic fea-

tures (Harrison et al. 2015; Laumann et al. 2015; Langs et al.

2016; Braga and Buckner 2017; Chong et al. 2017; Gordon, Lau-

mann,Adeyemo, et al. 2017a, Gordon, Laumann,Gilmore, 2017b),

which are behaviorallymeaningful (Bijsterbosch et al. 2018, 2019;

Kong et al. 2019; Seitzman et al. 2019). Recent studies have also

suggested that functional connectivity strength derived from

individual-specific parcellations might also improve behavioral

prediction (Pervaiz et al. 2019; Li, Wang, et al. 2019b).

We found that MS-HBM parcellations captured individual-

specific features that were replicable across sessions (Fig. 5

and Supplementary Figs S2–S7). Furthermore, RSFC derived

from individual-specific MS-HBM areal-level parcellations

achieved better behavioral prediction performance compared

with a group-level parcellation (Schaefer et al. 2018) and a

recently published individual-specific parcellation approach (Li,

Wang, et al. 2019b). Overall, our results suggest that individual

differences in functional connectivity strength of MS-HBM

parcels were more behaviorally meaningful than of other

parcellation approaches.

It is worth noting that the absolute improvement in pre-

diction performance was modest on average, although some

behavioral measures appeared to benefit more than others. For

example, when comparing Li2019 and gMS-HBM for behavioral

prediction, the prediction accuracy (Pearson’s correlation) of

“openness (NEO)” improved from 0.19 to 0.26, while the accu-

racy (Pearson’s correlation) of “vocabulary (picture matching)”

improved from 0.36 to 0.39. Thus, gMS-HBM might be more

helpful for predicting certain behavioral measures than others.

Further analysis suggested that task performance measures

were on average predicted with higher accuracy than self-

reported measures (Fig. 11). This differentiation between task

performance and self-reported measures was consistent with

previous investigations of RSFC–behavior relationships. For

example, RSFC has been shown to predict cognition better

than personality and mental health (Dubois et al. 2018; Chen

et al. 2020). Dynamic functional connectivity is also more

strongly associated with cognition and task performance than

self-reported measures (Vidaurre et al. 2017; Liégeois et al.
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2019). Finally, regressing the global signal has been shown to

improve the prediction of task performance measures more

than self-reported measures (Li, Kong, et al. 2019a).

Spatially Localized Individual-Specific Areal-Level
Parcels

Postmortem studies have generally identified cortical areas that

are spatially contiguous (Kaas 1987; Felleman and Van Essen

1991; Amunts and Zilles 2015). This has motivated most resting-

state areal-level parcellations to estimate spatially contiguous

parcels (Shen et al. 2013; Honnorat et al. 2015; Gordon et al. 2016;

Chong et al. 2017). One approach to achieve spatially contiguous

parcels is to introduce a spatial connectedness term into the

optimization objective so that distributed parcels would have

large penalty (Honnorat et al. 2015; Schaefer et al. 2018). Another

approach is to start with initial spatially contiguous parcels and

to iteratively adjust the boundaries to maintain spatial contigu-

ity (Blumensath et al. 2012; Chong et al. 2017; Salehi et al. 2019).

Yet another method is to utilize the local-gradient approach,

which detects sharp transitions in RSFC profiles, followed by a

postprocessing procedure (Cohen et al. 2008; Gordon et al. 2016).

However, work from Glasser et al. (2016) suggested that some

individual-specific areal-level parcels might comprise multiple

spatially close components in some individuals.

Given the lack of consensus,we explored three MS-HBM vari-

ants in this study. We found that strictly contiguous cMS-HBM

parcels achieved the best out-of-sample resting-state homo-

geneity and task inhomogeneity (Figs 6–8 and Supplementary

Figs S8–S10). One possible reason is that cMS-HBM parcellation

boundaries were smoother than dMS-HBM and gMS-HBM par-

cellations. Since fMRI data are spatially smooth, parcellations

with smoother boundariesmight have an inherent homogeneity

advantage, without necessarily being better at capturing true

areal boundaries. Another potential artifact of smooth data is

the appearance of excessively round parcels that are at odds

with histological studies,which show that cortical areas express

diverse spatial configurations.

Based on our geometric analyses, we found gMS-HBM to

be most anatomically plausible among the three parcellations,

having both fewer spatially disconnected components than

dMS-HBM, and intermediate levels of roundness between

dMS-HBM and cMS-HBM. Furthermore, RSFC derived from

gMS-HBM parcels achieved the best behavioral prediction

performance, albeit not reaching statistical significance (Fig. 9

and Supplementary Figure S11; Supplementary Tables S2–S5).

As elaborated in previous studies (Gordon et al. 2016; Schaefer

et al. 2018; Kong et al. 2019), assessment of parcellations should

integrate and weigh performance across multiple metrics.

For the reasons outlined above, we prefer individual-specific

gMS-HBM areal-level parcellations among the three MS-HBM

variants.

Overall, our findings suggest that the brain’s large-scale orga-

nization might potentially comprise certain functional regions

that are spatially disconnected. Neuronal migration, guided by

cell-to-cell interactions and gradients of diffusible cues, plays

an important role in establishing the brain’s complex cytoarchi-

tectonic organization during embryogenesis (Silva et al. 2019).

Spatially disconnected parcels might reflect functionally analo-

gous neuronal populations from the same cellular lineage that

separate due to natural variation in migration patterns in early

development.

That said, we are aware that one cannot establish with cer-

tainty the existence of spatially disconnected cortical areas

based on resting-fMRI data alone. It is possible that discon-

nected components of a noncontiguous parcel are inseparable

by resting-fMRImeasurements but are separable by other neural

properties, such asmicrostructure or task activations.Given that

fMRI is an indirect measurement of neuronal signals, the func-

tional coupling among disconnected components could also be

driven by non-neural mechanisms (e.g., vasculature).

Nevertheless, our individual-level areal parcellation provides

an explicit model that can be further validated using prospec-

tively acquired rs-fMRI paired with other approaches, for exam-

ple, post-mortem histological analyses (Xu et al. 2018; Hayashi

et al. 2020) or with spatially targeted intracranial recording

(Wang et al. 2015; Fox et al. 2018).

Conclusions

We proposed a MS-HBM that accounted for both inter-subject

and intra-subject functional connectivity variability when

estimating individual-specific areal-level parcellations. Three

MS-HBM variants with different spatial localization priors

were explored. Using 10 min of rs-fMRI data, individual-

specific MS-HBM areal-level parcellations generalized better

to out-of-sample rs-fMRI data from the same participants

than a group-level parcellation approach and two prominent

individual-specific areal-level parcellation approaches using

150 min of rs-fMRI data. Furthermore, RSFC derived from

MS-HBM parcellations exhibited better behavioral prediction

performance than alternative parcellation approaches.
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Supplementary material is available at Cerebral Cortex online.
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