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Abstract

Clear evidence supports a dimensional view of psychiatric illness. Within this framework, the 

expression of disorder-relevant phenotypes are often interpreted as a breakdown or departure from 

normal brain functions. Conversely, health is reified, conceptualized as possessing a single ideal 

state. We challenge this concept here, arguing that there is no universally optimal profile of brain 

functioning. The evolutionary forces that shape our species select for a staggering diversity of 

human behavior. To support our position, we highlight pervasive population-level variability 

within large-scale functional networks and discrete circuits. We propose that rather than by 

examining behaviors in isolation, psychiatric illnesses can be best understood through the study of 

domains of functioning and associated multivariate patterns of variation across distributed brain 

systems.
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Healthy variation in the era of dimensional illness

Over the past 30 years, psychiatric research has largely relied on a categorical system of 

diagnosis through which disorders are often treated as discrete biological entities [1, 2]. 

Although this approach has clear utility, for example in terms of diagnostic reliability, its 

validity has been widely challenged [3, 4]. In response, the field has recently begun to 

embrace a dimensional perspective of illness that incorporates continua of neurobiology and 

observable behavior [5]. While this theoretical framework facilitates the study of 

transdiagnostic symptom profiles and biological features that cut across domains of 

psychopathology, marked inconsistencies exist in how broader variability within the general 

population is currently interpreted [6–8]. In this regard, a fundamental challenge facing 

clinical neuroscientists is how to best conceptualize healthy population-level behavioral and 
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neurobiological variation when working to understand the etiology (see Glossary) of 

dimensional illnesses.

Implicit in modern clinical research is the assumption that deviations from the central 

tendency within a given phenotype by definition reflect an approach to pathology. Said 

another way, an unintended consequence of the adoption of dimensional models of illness 

has been the reification of health, a perspective where variability and vulnerability are 

treated as interchangeable constructs. In this review, we put forth an alternate interpretation 

of individual differences in the general population, arguing instead that there is no 

universally optimal profile of brain functioning. Critically, we do not dispute that 

psychopathologies in their various forms reflect significantly disordered behaviors that 

warrant treatment and likely possess discoverable brain bases. Rather, we present converging 

theoretical and empirical evidence demonstrating that pervasive population-level variability, 

even within clinically relevant phenotypes, should be interpreted in the context of both costs 

and benefits. Although specific brain functions are often treated as individual causal entities 

sufficient to generate pathology, they are far from deterministic in isolation. We conclude by 

proposing that research on the etiological bases of psychiatric illness will benefit from the 

collection of comprehensive phenomic-level datasets necessary to decipher the complex 

interactions of neurobiological processes, as well as their potential relations to domains of 

behavior and disease states [9–14].

The evolution of variability

Natural selection is a central organizing principle within the biological sciences. It is the 

primary mechanism of evolutionary change and provides the theoretical scaffolding that 

supports diverse fields of study from molecular and cellular biology through genetics, 

neuroscience, and psychology. Despite the fundamental importance of evolutionary concepts 

in clinical neuroscience, certain erroneous and unrealistic views have been incorporated, at 

least implicitly, in modern neurobiological theories of psychiatric illness. In the following 

sections, we detail core features of human brain evolution, providing selective examples 

from both cortical and subcortical systems. However, prior to discussing how variation 

presents in the general population, it is important to first highlight an essential principle of 

evolution through natural selection that helps to frame our argument.

“Evolution has no long-term goal. There is no long-distance target, no final 

perfection to serve as a criterion for selection…”

Richard Dawkins [15, p 50.].

Healthy variation is ubiquitous and adaptive in populations, from the level of genes through 

expressed behaviors. This variability is a fundamental requirement for evolutionary change, 

influencing fitness-linked traits and providing raw material for the process of natural 

selection [16]. Historically, intense selection pressures were often theorized to function as a 

winnowing process, gradually culling all but the most adaptive genetic and behavioral 

phenotypes [17, 18]. From this viewpoint, heritable variation ought to be absent within 

fitness relevant traits and most of the observable genetic variability in a population should be 

functionally irrelevant. A property of evolution that is reflected across species, for instance, 
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in the marked conservation of stereotyped gene regulatory elements that support core aspects 

of neural development [19]. This theoretical framework provides support for modern 

classification systems of psychiatric illness where dysfunction has been defined, in part, as 

deviation from a statistical norm [20], or the disrupted functioning of an evolved process 

[21]. As initially articulated, these theories of illness were carefully nuanced when defining 

what might constitute the failure of a biological system, particularly with respect to mental 

operations [21]. Yet, over time this subtlety has been lost and some persistent 

misconceptions have emerged across the field. These take two primary forms. First, that 

within the general population it is possible to identify an optimal value associated with a 

dimensional trait studied in isolation. Second, that the adaptive value of a trait is immutable 

or fixed. We briefly address each of these points below.

There are numerous reasons why the process of evolution in a population may not converge 

on a stable optimal value, or even a narrow range of values within a given trait (Box 1). 

Reflecting this property of natural selection, there is strong evidence for pervasive variability 

across species in domains with direct relevance to environmental fitness [22] ranging from 

morphometric features important to diet (beak depth in finches [23]) and predation (guppy 

color patterns [24]) through behavior responses linked with reproduction (the propensity to 

call in male crickets [25] or the mating strategies of large, anadromous male vs. small, 

mature male parr Atlantic salmon [26]) and temperament (boldness and docility in bighorn 

sheep ewes [27]). As space does not permit a detailed discussion of each area of possible 

variability relevant to clinical research, foraging behaviors will be used to illustrate that traits 

are not universally advantageous but rather reflect a mixture of costs and benefits. Readers 

should note that a thorough treatment of these arguments within the domain of personality 

and temperament is available elsewhere [28–32].

Box 1

The evolution of individual differences

Evolution does not obligate an approach toward a single archetypal form for a given trait. 

Within-population variation is ubiquitous across species in fitness-relevant phenotypes, 

such as tolerance of natural (abiotic) stressors, dietary preferences, predation risk, 

parasite resistance/tolerance, dispersal (e.g. partial migration), and temperament (e.g., 

dominance vs. submissiveness) [for review see, 32]. There are numerous pathways 

through which fitness-relevant variation is maintained in a population. Due to space 

limitations, we selectively highlight two interrelated processes that can result in 

population-level variability. Importantly, although we provide evidence for adaptation in 

select traits, readers should note that phenotypes may also vary within a population in a 

neutral manner.

Environments are rarely static. Diverse presentations of a given trait may be favored 

across conditions [145], resulting in population-level variability as fluctuating 

environments create divergent phenotypic selection. For instance, escape ability among 

Trinidadian guppies (Poecilia reticulata) evolves as a function of varying predation 

environments across freshwater streams [146]. Population differences in several 

antipredator behaviors evolve rapidly following environmental change (15–20 years; 
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~26–36 generations). Following release from high-predation environments, populations 

of guppies experience a rapid evolutionary loss of escape ability. This suggests the 

presence of steep fitness trade-offs associated with the expression of escape traits across 

contexts, possibly reflecting the increased resource costs associated with vigilance and 

escape rather than foraging and courting.

The distribution of intra- and inter-species competitors can give rise to distinct, yet 

equally adaptive, strategies for maximizing fitness in the absence of a universal optimum 

[134, 147]. As an example, natural selection may favor mechanisms that cause some 

individuals to seek behavioral and environmental niches with less intense competition 

[32]. This process of individual niche or strategic specialization can arise through factors 

including phenotypic variation across sexes [148], differences in size, shape, and 

behavior [149], and the presence of discrete morphs (forms) within a population [150]. In 

Atlantic salmon, for example, there is intense competition for mates. As a likely 

consequence, two alternate male mating strategies have emerged [26]. One phenotype 

consists of large males who search the spawning grounds courting mates and fighting 

rivals. In contrast, a second smaller class of males attempt to ‘sneak’ access to mates. 

Although this behavior carries costs in terms of subsequent growth and survival, it offsets 

the heavy burden associated with fighting for courtship opportunities. As should be clear 

in these examples, the expression of a trait is rarely entirely advantageous or 

disadvantageous; rather, it depends on the environment and relative frequency of 

phenotypes in a population.

Nearly all early studies of foraging assumed that there is a single ideal strategy with 

individual differences in behavior reflecting non-adaptive variation surrounding an adaptive 

mean [33]. In a seminal series of studies on the great tit, Parus major, Niels Dingemanse and 

colleagues elegantly showed the limits of this belief, establishing that the optimal 

temperamental profile and associated foraging style can vary from year-to-year according to 

environmental constraints [34–36]. In natural bird populations, as in humans [37], 

individuals differ in their predisposition to take risks and explore, particularly in novel or 

challenging situations. Dingemanse’s work revealed that when food was scarce, female birds 

with a tendency towards exploration were more successful at gathering the limited resources 

and had an increased probability of survival. Conversely, in years when food was abundant, 

increased exploration associated with unnecessary, dangerous, and costly aggressive 

encounters and decreased survival.

The absence of a universally optimal foraging strategy gives rise to the coexistence of a 

broad range of behavioral responses within populations [38]. Evidence for associated 

tradeoffs are apparent across evolutionary lineages. In honeybee colonies, for instance, the 

presence of consistent interindividual differences in behavior are essential to colony survival, 

enabling flexible responses to environmental variation. Individual bees fall along a 

continuum from slow-accurate to fast-inaccurate foraging strategies [39, 40]. While quick 

yet inefficient foraging results in greater total pollen collection within resource-rich 

environments, this strategy is less effective when resources are limited and accuracy is 

favored. The benefit of heterogeneous foraging strategies is also apparent in cases of partial 
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migration. As an illustrative example, the likelihood of migration in roach fish is influenced 

by individual differences in risk taking, with “bold” individuals demonstrating an increased 

propensity to migrate when temperature change reduces food availability and heightens 

predation risk [41]. While the act of migration may result in exposure to environmental 

hazards, it maximizes the availability of scarce resources for this subset of the population.

The presence of fluctuating costs and benefits are apparent over a host of time-scales, 

environmental contexts, and levels of analyses. In humans, a genetic mutation that reduces 

height by ~1 centimeter while also increasing osteoarthritis risk by ~80 percent may have 

helped some populations survive the most recent ice age [42], potentially through selective 

advantages including energetic control [43] and enhanced thermoregulation [44]. For those 

of us living within industrialized nations in relatively sterile environments, the ε4 allelic 

variant of the Apoliprotein E (APOE) gene is the strongest genetic risk factor for age-related 

cognitive decline and Alzheimer’s disease [45]. However, in environments with elevated 

parasitic loads the ε4 ‘risk’ variant of ApoE4 may transform from a liability to an advantage, 

associating with increased protection from parasitic infection [46–49] and heightened 

cognitive performance in individuals carrying a high pathogen and parasite load [50].

Why should clinical neuroscientists care about the evolution of the human 

brain?

A number of important motivations exist for considering the nature of both behavioral and 

neurobiological variability in the context of human brain evolution. First and foremost, a 

comprehensive understanding of the brain expansion that separates us from our closest ape 

cousins allows researchers to identify potential homologs and species-specific differences, a 

process of comparative analyses that serves as the backbone of modern biomedical science. 

As famously argued by Theodosius Dobzhansky [51], “nothing in biology makes sense 

except in the light of evolution.” The foundational discoveries that underpin the broad field 

of human neuroscience were, for the most part, derived on a select set of relatively distant 

model organisms (including sea slugs, fruit flies, zebrafish, rodents, cats, and macaque 

monkeys). The utility of this body of work rests on the core assumption that humans share 

common ancestry with other animals [52]. For clinical neuroscience specifically, the 

‘dysfunction’ model of psychiatric illness is anchored in evolutionary biology and predicated 

on our ability to characterize the naturally selected function/s of disease-relevant biological 

processes. To accomplish this goal, we must consider the manner in which healthy variation 

presents throughout the brain, and in turn how that variability relates to suites of behaviors 

across a host of environmental contexts. In this regard, a striking observation has been that 

while neurobiological variability is pervasive, it is not distributed in a spatially uniform 

manner [53–55]. Instead, the observed profile of variability parallels the evolutionary 

expansion of the human brain (Figure 1A) [55–57].

Human brain evolution

The oldest known primate fossils are approximately ~55 million years of age, with the 

earliest primates potentially extending back into the Cretaceous period [58]. As the primate 

lineage evolved, intense selection pressures shaped and molded the hominid brain, 
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providing our distant ancestors with the capability to create tools, develop language, and 

form large social groups. As early as the turn of the 20th century, it was recognized that 

relative to other species, human brains are characterized by increased size, complexity, and 

circuit structure [59]. In animals, as a broad rule, absolute brain and body sizes share a 

predictable allometric relationship [60]. Yet, when considering body weight, the modern 

human brain is about 5 times larger than would be expected in a typical mammal [60]. With 

the exception of tree shrews, as the primate lineage diverged from rodents, rabbits, and 

flying lemurs, brain sizes increased markedly in proportion to overall body size [61]. This 

expansion predominantly affected the surface area of the cerebral cortex [62]. While all 

primate brains have disproportionally large neocortices given their absolute brain volume, 

the human cerebral cortex has vastly expanded since our evolutionary divergence from the 

last common ancestor shared with macaques ~25 million years ago and the ~6 million years 

that separate us from chimpanzees and bonobos, our closet living primate relatives [57, 63].

There is a common misconception that the evolutionary enlargement of the human brain is 

either specific or preferential to prefrontal cortex. Although prefrontal areas are greatly 

expanded in humans relative to non-human primates, so too are temporal and parietal 

cortices [64]. Notably, this scaling is not uniform across brain systems [62]. The basic 

spatial layout of the primary sensory areas that comprise unimodal cortex is largely 

conserved across mammals. However, as brain sizes increased in primates, a greater 

percentage of the cortical mantle began to occupy areas between the primary and secondary 

sensory systems [65], an effect that is amplified in humans [57]. These expanded cortical 

territories fall within the ‘association centres’ originally hypothesized by Paul Flechsig to 

serve as the neural substrate for higher cortical functions and complex associative processing 

[66]. Whereas unimodal sensory areas possess a serial, hierarchical pattern of feedforward/

feedback connectivity [67], association cortex is characterized by an intricate non-canonical 

circuit organization [68]. These evolutionarily expanded aspects of cortex remain 

structurally immature during gestation [57] and myelinate later in development [69]. This 

prolonged maturation course exposes association cortex to environmental impacts during 

periods of high neuroplasticity, a feature of brain development that has clear implications for 

understanding variability in cognition and behavior [70]. Beyond these shifts in cortical 

anatomy, other specializations have occurred in the composition of human brain tissue 

(neurons, glia, axons and dendrites), including increased neuronal diversity and density, 

altered molecular expression, and different developmental stages and wiring paths [71–73] 

(Box 2).

Box 2

Human brain evolution beyond the cerebral cortex

The evolution of cerebral cortex should not be viewed as an isolated process, removed 

from the rest of the brain. Paralleling the increase in cortical surface area, the volume of 

white matter underlying cortical connections is disproportionately larger in humans than 

in other primates [151]. A process of ‘neocorticalization’ that provides an anatomical 

substrate for the increased influence of cerebral cortex on brain functions [61]. While the 

vast majority of the literature on both brain functioning and evolution is corticocentric, it 
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is not the case that ‘phylogenetically ancient’ brain regions are identical across species. 

Indeed, there is evidence for descent with modification across all brain systems 

throughout our evolutionary lineage, even those often miscast as purely phylogenetically 

recent (cortical) or evolutionarily old (subcortical). Consistent with the theory that 

anatomically and functionally coupled brain structures evolve together [152], the relative 

size and neuron numbers within subcortical regions have been linked to their degree of 

connectivity with association cortex. The human cerebellum, for example, is ~31% larger 

than the allometric expectation for a typical mammalian brain [153], a trait that is 

consistent across humans and great apes relative to other anthropoid primates [153]. 

While the primary role of the cerebellum was traditionally thought center on the planning 

and execution of motor movements [154–156], the majority of the human cerebellum is 

functionally linked with cerebral networks involved in cognition [78, 157]. Consistent 

with the preferential expansion of association cortex in humans, relative to great apes, the 

aspects of cerebellum interconnected with the prefrontal cortex are disproportionately 

larger than regions interconnected with the motor cortex [158]. Similar patterns are also 

evident across subcortex. For example, while the global volume, primary nuclei, and 

basic circuit connections and function of the amygdala are conserved across species 

[159], meaningful differences do exist [160]. Although the proportional volume of the 

amygdala is not substantially increased, the basolateral nuclei are enlarged in primates 

relative to rodents [161]. A potential consequence of the substantial increase in the size of 

the cortical territories that share reciprocal connections concentrated within the 

basolateral nucleus [104].

Healthy variability is apparent across large-scale networks and 

circumscribed circuits

Population-level variability is often taken, implicitly and erroneously, to indicate deviation 

from an archetypal ideal and an associated approach to pathology. Here we detail examples 

of functional and anatomical variation in healthy populations within both cortical and 

subcortical brain systems. The selected neurobiological phenotypes are not meant to be 

exhaustive, rather we hope to illustrate the point that neurobiological ‘markers’ of illness 

link to broad domains of behavior. In doing so, we highlight the presence of pervasive 

overlap across healthy and patient populations.

Frontoparietal network function in health and disease

At the turn of the 20th century Aloysius Alzheimer [74] and Elmer Southard [75] proposed a 

core role for the evolutionarily expanded aspects of human association cortex in 

neuropathology, suggesting that they underlie forms of dementia and psychotic illness. 

Rather than reflecting a single functional system, association cortex consists of distinct yet 

highly interconnected networks, each of which possesses a unique pattern of connectivity. 

The frontoparietal control network, for instance, which encompasses portions of the 

dorsolateral prefrontal, dorsomedial prefrontal, lateral parietal, and posterior temporal 

cortices [76] (Figure 1B) as well as corresponding aspects of the striatum [77] and 

cerebellum [78], underlies a host of executive functions that play a crucial role in goal-
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directed planning [79], the application of complex, nested rules [80], and the dynamic 

control of motor outputs [81]. Consistent with the central importance of executive 

functioning deficits in mental health, a growing literature implicates frontoparietal network 

impairments as transdiagnostic markers of psychopathology [82]. A set of relationships that 

may emerge through the generation of symptoms that are domain-specific (e.g., impairments 

in executive function), but cut across a host of pathologies [83]. As one example, our work 

has demonstrated the presence of disrupted frontoparietal network function in a range of 

psychotic disorders (including schizophrenia, schizoaffective disorder, and bipolar disorder 

with psychosis; Figure 1B) [84]. This accumulating body of evidence has prompted 

speculation that the frontoparietal network, and associated executive functions, may serve as 

an illness biomarker with potential diagnostic or predictive applications.

Targeting a specific, well-defined phenotype can provide a mechanistic level of analysis, 

allowing researchers to investigate the biological underpinnings of associated population-

level variability and pathology. Without question, the study of frontoparietal network 

functions has provided important insights, characterizing aspects of brain biology that link to 

the presence of illness. Despite this progress, recent work has suggested limited clinical 

utility for the vast majority of proposed psychosis biomarkers [85, 86]. Potentially 

contributing to this disconnect, the bulk of case-control analyses report mean differences 

between groups within single neurobiological phenotypes studied in isolation. While this 

approach may yield consistent statistical differences, it can also mask the presence of 

substantial overlap in phenotypic distributions across populations, providing the illusion of 

group specificity (Figure 1C). This issue is particularly relevant in the evolutionary 

expanded aspects of association cortex, which are marked by pronounced population-level 

variability in both anatomy [37] and network topography [87], as well as spatially complex, 

and non-uniform, patterns of genetic heritability [88]. Across the large-scale cortical 

networks, frontoparietal exhibits the greatest functional variability, in contrast to the 

relatively muted intersubject variation within unimodal sensory and motor cortices [56]. 

This variability may arise, at least in part, though the relaxed genetic control of cortical 

organization in human association cortex relative to other primate species [89] and a 

prolonged maturation course. Consistent with this profile, highly overlapping distributions 

of frontoparietal network function are evident across patient and healthy comparison 

populations. The neurobiological factors that underlie common psychiatric illnesses do not 

operate in an isolated manner. Rather, there are numerous interactions that link the collective 

set of functional connections in the brain (functional connectome [90]) with a given 

phenotype. Although frontoparietal network disruption may contribute to a variety of 

psychiatric illnesses, it likely only does so in conjunction with variability in other brain 

systems [82, 83].

An additional issue that can obscure the relations linking brain functioning with real-world 

outcomes is a reliance on circumscribed behavioral/clinical endpoints. The frontoparietal 

network supports a wide-ranging set of executive functions (e.g. motor processing, working 

memory, and cognitive control) [91]. The perturbation of frontoparietal connectivity would, 

almost necessarily, influence the expression of a broad set of behaviors. Variation in any one 

of these processes is not, in and of itself, necessarily pathological. Together, these behaviors 
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present a complex set of interwoven phenotypes, whose impacts vary across environments. 

Impulsive sensation seeking provides a potentially useful example relevant to our discussion 

of foraging behaviors. Impairments in frontoparietal network mediated executive functions 

are hypothesized to underlie extreme forms of sensation seeking, impulsivity, and substance 

use in patient populations [92–94]. In healthy young adults, the expression of these 

behaviors links with subtle variations in brain anatomy, preferentially localized to regions 

implicated in cognitive control including the anterior cingulate cortex and middle frontal 

gyrus [37]. These data suggest that normal variation within the brain regions that support 

inhibitory control and goal-directed action could bias individuals toward substance use and 

the associated risk of developing abuse and dependence. Yet, this is not the only behavioral 

consequence. Our tendency to engage in sensation seeking and impulsive behaviors evolved 

as a function of their influence on survival and reproductive fitness [95]. They are not simply 

synonymous with adverse outcomes. For instance, increased sensation seeking co-varies 

with social behavior [96], social support [97], physical activity [98], reproductive 

opportunities [99], and environmental exploration [100].

Individual variability in amygdala-medial prefrontal cortex circuit anatomy

All creatures from single cells through complex vertebrates have the capacity to detect and 

respond to environmental threats and opportunities [101]. These behavioral capabilities are 

fundamental to survival as organisms work to balance potential benefits (e.g. acquiring food 

or mates) against possible dangers (e.g. predation). In mammals, these survival-relevant 

processes are supported by the coordinated function of a highly integrated system centered 

on the amygdala [102]. While there is evidence for a strong conservation of this circuitry 

across species, throughout primate evolution it has increased in complexity, supporting the 

development of progressively sophisticated behaviors [103]. In human and non-human 

primates, the projections that link amygdala with cortex are widespread, but are particularly 

dense within medial prefrontal cortex (mPFC) rostral and ventral to the genu of the corpus 

callosum [104]. Coordinated amygdala-mPFC circuit function supports a host of behaviors 

including affective [105, 106] and social processes [107, 108], as well as vigilance and 

arousal in response to salient environmental stimuli [109, 110].

There is strong evidence for group-level shifts within the structure and function of 

amygdala-mPFC circuitry across a range of psychiatric disorders marked by heightened 

threat sensitivity, dysregulated affect, and impaired social cognition. This is perhaps most 

evident in unipolar and bipolar depression where the disrupted metabolism and function of 

mPFC is hypothesized to underlie the occurrence of depressive and manic episodes [104, 

111, 112], while cortical thinning in mPFC associates with illness chronicity [113]. In 

healthy populations, the strength of anatomical [114], intrinsic [115] and task-evoked [116] 

amygdala-mPFC coupling is altered in individuals with high levels of anxiety or related 

behavioral profiles. Cortical thinning in the mPFC regions associated with negative affect 

links with decreased social functioning [114] (Figure 2A). However, while affective and 

social impairments reflect core features of depression, the relations between amygdala-

mPFC circuit anatomy and illness are remarkably subtle [117, 118], accounting for a limited 

amount of the phenotypic variance in case-control analyses (Figure 2B). Although individual 

differences in affect and social cognition may be neurally embedded within clinically 
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healthy individuals, and while statistically significant structural abnormalities are evident in 

large-scale analyses of patient populations, the observed associations are too small to be 

useful as individual predictors of illness risk or onset.

The relation between psychological health and social functioning is well established [119, 

120]. Given the evidence for a broad range of detrimental effects associated with even slight 

variations in amygdala-mPFC circuit function, much of the research in this area has 

understandably been focused on maladaptive costs and negative outcomes. While negative 

affect and reduced sociability may heighten risk for psychiatric [121, 122] and physical 

illnesses [123, 124], they can also aid in the avoidance of adverse events [125–127]. As 

noted above, reduced threat sensitivity in animals associates with increased environmental 

exploration and foraging opportunities, while anxiety and its associated reduction in 

exploration decreases predation risk [128]. In humans, even moderate levels of anxiety are 

predictive of reduced accidents and accidental death in early adulthood [129], while the 

genetic associates of anxiety and worry are linked to affluence, cognitive ability, improved 

health, and longer life [127]. A similar profile of both beneficial and detrimental impacts is 

evident when considering social functions. For instance, although social integration might 

improve access to food, protection, and mating opportunities [130, 131], it also can increase 

resource competition, role strain, and infection exposure [121, 132, 133].

Focus on fitness/Focus on the phenome

A core goal of clinical neuroscience is to characterize the biological processes that underlie 

diseases and disorders of the brain and central nervous system, enabling the development of 

more effective treatment and prevention strategies. Historically, the vast majority of work in 

this domain has focused on carefully curated sets of behaviors or symptoms of interest, 

studied in isolation (Figure 3A). This important work provides a foundational first step in 

understanding how neurobiological variability relates to clinical pathology, but it can only 

take us so far. Heritable variation is pervasive across the population and should be expected 

as the normal outcome of evolutionary processes. With the exception of gross pathology, 

shifts within a selected neurobiological function or behavior in isolation will neither be 

necessary nor sufficient to generate psychiatric illness. Within an individual, behavior is not 

fixed or static, changing in response to available resources, environmental demands, and 

internally held goals. While there may be fitness disadvantages at the extremes [134], 

population-level variability must be interpreted in terms of cost-benefit tradeoffs that can 

dynamically fluctuate across environments [28]. Moreover, the brain functions as an 

integrated system. Complex demographic, clinical, and behavioral phenotypes arise from 

coordinated interactions throughout the functional connectome [135]. Functionally flexible 

brain regions show nonspecific relations to behavior, supporting a wide range of cognitive 

processes [91, 135] (Figure 3B). Given this level of complexity, it is unlikely that we will 

achieve a breakthrough in our understanding of how the brain’s intricate functions give rise 

to psychiatric illness by investigating a handful of candidate biomarkers at a time. Current 

limits on our ability to understand many important illness-relevant biological phenomena 

suggest that we are not adequately sampling all the relevant variables and that we must 

broaden our phenotypic net [9–14].
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Understanding how variability in brain functions contributes to the onset of psychiatric 

illness depends on unraveling the precise and carefully coordinated interactions between 

networked brain regions and their associated responses to environmental change. Individual 

differences in behavior are correlated across functional contexts, such as the relationship 

between foraging and mating [32]. The interactional nature of behavioral phenotypes likely 

results in complex fitness landscapes [136]. However, most studies of phenotypic variability 

in health and disease tend to be disconnected from one another, impeding the development 

of fully dimensional models of brain function and obscuring how neurobiological processes 

might coalesce to support suites of behaviors within an individual. To characterize the 

consequences of variability within a given aspect of brain functioning, these relationships 

need to be fully catalogued, allowing researchers to link phenomena across levels, from 

genes and molecules through cells, circuits, networks, and behavior (Figure 4, Key figure). 

Progress in this domain will come through the collection of holistic datasets, or physiomes 

[9], that encompass brain structure and function as well as diverse clinical, demographic, 

behavioral, genetic phenotypes.

A call for (multivariate) phenomics in neuroscience and psychiatry

Over the past several decades, geneticists have persuasively argued for the initiation of large-

scale phenotyping efforts to link genetic variants and biological outcomes [9–14]. Echoing 

these debates, clinical neuroscientists must decide between focusing individual efforts on a 

stable but limited set of measures or expanding our approach to collaboratively purse the 

collection of phenomic-level data. This is the ideal time to consider such a question. The 

union of new imaging technologies, methods for online or remote behavioral sampling, and 

a cultural shift towards open access data have provided the opportunity to rapidly acquire 

high-dimensional phenotypic data in large populations [137] or in individuals with dense 

longitudinal sampling [138]. In parallel, the rapid development of computationally 

sophisticated analytic approaches have allowed us characterize the functional connectome, 

establishing that large-scale network functions are heritable [88, 139] and serve as a stable 

and reliable “fingerprint” across individuals [87, 140]. However, despite these important 

advances, we lack the necessary data to decipher the intricate relations linking the totality of 

brain functions with complex behavioral phenomena.

Recently, large-scale collaborative efforts have begun to generate broad phenotypic batteries 

that encompass brain structure and function as well as multiple domains of cognition, 

behavior and genetics [141–144]. Although challenges remain (Box 3), these herculean 

efforts have provided a wealth of data for researchers to map links across diverse neural and 

cognitive states. Unfortunately, these collections have been largely divorced from research 

on clinical populations (see Outstanding Questions). Understanding how an aspect of brain 

biology impacts a selected behavior requires the study of how brain processes integrate 

information across specialized networks to function as a unified whole, how diverse sets of 

behaviors relate to one another, and how individuals within the population respond to 

shifting contextual and environmental factors across their lifespan. The map of the relations 

linking population-level variability with illness risk will be inaccessible without detailed and 

comprehensive high-dimensional phenotypic data to allow these interactions to be studied.
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Box 3

Progress, limitations, and considerations

The unprecedented growth of big data in neuroscience provides opportunities for 

researchers seeking to understand how brain functions influence suites of behavioral 

phenotypes and associated illness risk. To date, these efforts have largely focused on 

cross-sectional samples [141, 142] or longitudinal assessments within select individuals 

[138]. Initially, open-access datasets within clinical populations were limited in scope 

and concentrated on the early detection and tracking of age-related pathologies [162, 

163]. Recently, collaborative genomic, imaging, and public health initiatives have been 

formed to improve the diagnosis and treatment of a wide range of serious illnesses across 

adolescence and adulthood [143, 144, 164–166]. Despite the development of these 

important resources, several key challenges remain.

Human behavior presents a special challenge for the collection of high-throughput data 

because of its dynamic nature and dependence on context. As a result, consortia must be 

somewhat selective when charting out the range of environments, phenotypes, and spatial 

and temporal scales at which data should be collected. The available data are often 

limited by our expectations of disease mechanism, potentially obscuring novel discovery. 

Additionally, these constraints can result in samples that are not fully representative of 

the general population across a variety of demographic, physical, lifestyle, and health-

related characteristics. This is perhaps most relevant in the area of developmental 

variability. In adult populations, the observed profiles of neurobiological variability may 

be genetically driven, or could arise in conjunction with developmental and behavioral 

plasticity or early-life factors such as social status or environment. Clearly, in cases 

where longitudinal data are unavailable, we must constrain our interpretation to fit the 

sample characteristics within each dataset.

The scale of open-data consortiums in neuroscience makes it possible to study the 

relations linking brain functions with rich sets of behaviors, for instance the use of remote 

collection methods to examine the free movement of individuals interacting with their 

environment. Yet, as datasets increase in density, it will become more and more difficult 

to analyze and extract meaningful biological conclusions. For many research groups, a 

key challenge to overcome in the use of big-data is the substantial compute requirements, 

and analytic expertise, for the storage and analysis of massive collections of cross-modal 

digital information that often exceeds tens or even hundreds of terabytes. Here, we need 

to adopt recent advancements in the analyses of high-dimensional datasets developed in 

statistics and machine learning [167, 168], collaborating across fields with specialists 

trained to implement these approaches.

Outstanding Questions Box

• How do dynamic changes in brain functions and behavior differentially shape 

fitness and illness risk across the lifespan? The diversity of human experience, 

from health to disease, arises through developmental processes that unfold 
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over the lifespan. The costs and benefits of many behaviors vary over the 

course of an individual’s life, in ways that are largely unexplored.

• To what extent are the adaptive and maladaptive features of clinically relevant 

behaviors determined by an individual’s environment? The detrimental or 

beneficial impacts of variability in most behaviors remain largely unknown 

across environments. For many environments, it is not clear if, or even when, 

experience might influence brain or behavior. Do certain experiences induce 

shifts in brain function that are transiently adaptive but carry long term costs?

• Are there converging relations across in vivo imaging methods that better 

capture the links between brain and behavior? Most large-scale phenotyping 

efforts rely on intrinsic connectivity estimates to infer brain function. As an 

approach, it is not without limitations. If task-evoked manipulations are 

utilized, which phenotypes should we prioritize?

• To what degree does the unique spatial configuration of an individual’s 

functional connectome relate to inter-subject variation in behavior? 

Evolutionary expanded aspects of association cortex are characterized by 

marked variability in both network function and topographic organization. 

Individualized network parcellations may help disentangle the impact of 

variability in brain organization from functional integrity when investigating 

illness risk.

• How should we train future generations of scientists? Traditional statistics 

emphasize relations between limited sets of predictors and outcome variables. 

The size and scope of large-scale phenomic datasets will shape future data 

analysis practices. The study of brain-phenome relations is beyond the 

expertise of individual labs and will likely require cross-field collaboration 

and training approaches that extend beyond isolated departments.

Concluding remarks

The ubiquity of healthy variability in behavior and brain functions seems to pose a clear 

challenge for the study of dimensional illness. While it may not be feasible to identify 

individual features of brain biology that cleanly separate healthy and disordered populations, 

multivariate fingerprints of pathology may eventually emerge. To identify such points of 

demarcation, our data collection and analytic efforts will have to incorporate genetics, 

neurobiology, and dense phenomic samples of entire individuals and their associated 

environments. To aggregate, analyze, and interpret such high-dimensional datasets, we will 

need to reassess our current conceptual framework, extending beyond conventional clinic or 

laboratory-based behavioral assays. As highlighted in this review, progress in the study of 

psychiatric illness will require increased collaboration as the field works to piece together 

the necessary integrative datasets. With a sufficiently dense sample of phenotypes, it may be 

possible to determine which aspects of brain function underlie differences in behavior and 

fitness across environments. Such detailed information can then be leveraged to nominate 

etiological mechanisms underlying vulnerability for illness onset.
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Glossary

Allometric scaling
relation between the size of the body as a whole and the size of a specific structure. 

Although a given component may differ to a greater degree than another, they must show a 

predictable relationship. This can differ from isometric scaling, where organisms maintain 

geometric similarity as they change in size (e.g., the relationship linking surface area and 

body mass).

Biomarker
a measurable indicator whose presence is an objective sign of a given biological state or 

condition, including pathogenic processes or pharmacologic responses to a therapeutic 

intervention.

Cerebral Cortex
the 2–3mm thick multi-layered sheet of gray matter that covers both hemispheres and 

supports sensory and motor functions as well as the ‘higher’ mental processes that are 

theorized to distinguish humans from other animals.

Etiology
the study of causation or origination. Etiology is often used to refer to the cause of a 

pathological or abnormal condition.

Fitness (within the context of evolution)
reproductive success of a genotype or phenotype within a given environment.

Heritable
observed phenotypic variation that is attributable to genetic variation, transmissible from 

parent to offspring.

Homologs
refers to similar structures, physiological characteristics, or development in related species 

that have been inherited through their descent from a common ancestor.

Hominids
a taxonomic family of primates that includes humans, the great apes (bonobos, chimpanzees, 

gorillas, orangutans), and their extinct ancestors.

Medial prefrontal cortex (mPFC)
the medial surface of the frontal lobe encompassing both granular cortical areas (medial 

aspects of Brodmann areas (BA) 9 and 10) and agranular regions (BA 24, 25, and 32), which 
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include the peri-/sub-genual anterior cingulate cortex (BA 24), infralimbic cortex (BA 25), 

and prelimbic cortex (BA 32).

Partial migration
a phenomenon where only a fraction of a population is migratory, some individuals may 

participate in seasonal migration while others do not.

Phenomics
the area of biology concerned with the measurement of phenomes, or the full set of physical 

and biological traits belonging to a given organism. Phenomics can also refer to the 

acquisition of high-dimensional phenotypic data.

Phenotype
the set of observable characteristics of an individual resulting from the interaction of its 

genotype with the environment.

Phylogenetic
the evolutionary development and history of a species or higher taxonomic grouping of 

organisms.
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Trends Box

Implicit in modern dimensional theories of psychiatric illness is the assumption 

that population variability and illness vulnerability are interchangeable constructs.

Mounting evidence suggests that healthy variation is ubiquitous in natural 

populations and must be interpreted in terms of cost-benefit tradeoffs.

Psychiatric illnesses arise through a web of interactions linking brain function, 

behavior, and a lifetime of experiences. Research on illness etiology will only 

progress through the collection of comprehensive phenomic-level datasets.

Large-scale collaborative efforts begun to generate broad phenotypic batteries that 

encompass environmental and contextual factors, brain structure and function, as 

well as multiple domains of cognition, behavior and genetics. These datasets hold 

great potential for clinical researchers seeking to map links across diverse neural 

and cognitive states.
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Figure 1. Healthy variability is apparent across neurobiological markers of illness risk
(A) The evolutionary expansion of human cerebral cortex is highly correlated with inter-

subject variability in functional connectivity. The top image reflects a comparison of 

evolutionary cortical expansion between an adult macaque and the average human adult. 

Values indicate the absolute expansion ratio, normalized by taking the logarithm subtracted 

with a constant. Data are displayed on the lateral and medial cortical surfaces. Bottom image 

displays the intersubject variability in functional connectivity across the cerebral cortex. 

Cool colors reflect values below the global mean, while values above the global mean are 

shown in warm colors. Figures adapted from data provided by van Essen [55], Mueller [56] 

and colleagues. (B) Top image reflects frontoparietal control network topography revealed 

through intrinsic functional connectivity. Colors reflect regions estimated to be within the 

same frontoparietal sub-network (control A, B, and C). Bottom image displays the 

functional connectivity differences between patients with psychotic illness and healthy 

comparison participants across regions in the control B network, shown using a conventional 

seed-based approach. Values reflect conjunction of significant differences across control B 

regions displayed on the left hemisphere. (C) Analytic approaches that focus on group 

differences may mask the presence of substantial overlap in phenotypic distributions across 

populations, providing the illusion of diagnostic specificity. Bar graph and histograms show 

the correlations between components of the frontoparietal control network in patients with 

psychotic illness and healthy comparison participants. Error bars denote SE. Adapted with 

permission from [84, 142].
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Figure 2. Healthy variability is apparent across circumscribed brain circuits
(A) In healthy young adults, subtle shifts in the gray matter thickness of medial prefrontal 

cortex links negative affect, impaired social functioning, and errors in emotion perception. 

These data suggest that variability in multiple domains of function are reflected in the 

normal anatomical variability of a shared mPFC network. Color bars reflects Pearson 

correlations. Adapted with permission from [114]. (B) Although statically significant 

structural abnormalities are evident in large-scale analyses of psychiatric illness, pervasive 

overlap exists across healthy and patient populations. The observed associations are likely 

too small to be useful as predictors for individuals and a limited amount of the phenotypic 

variance is accounted for in case-control analyses. Histogram shows the mean cortical 

thickness of the left medial orbitofrontal cortex (mOFC) for adult patients with major 

depressive disorder and healthy comparison participants. Figure adapted from data provided 

by Schmaal and colleagues [117] (http://enigma.ini.usc.edu/ongoing/enigma-mdd-working-

group/).
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Figure 3. Complex phenotypes arise from coordinated interactions across the functional 
connectome
(A) Research on psychiatric illness etiology often focuses on isolated aspects of brain 

function and limited sets of behaviors. Here, toy data provides an example where case/

control differences in frontoparietal network connectivity, and evidence that network 

variability links with a circumscribed behavior, may be taken to suggest the presence of an 

illness biomarker. (B) However, attempts to nominate biomarkers with a few curated 

phenotypes are unlikely to be successful. The brain functions as an integrated system. 

Complex behaviors emerge from coordinated interactions throughout the functional 

connectome (many-to-one). A given neurobiological process can support suites of behaviors 

(one-to-many). The circle plot on the left reflects a nested cognitive ontology estimated from 

10,449 fMRI experiments across 83 task categories. Adapted from data provided by Yeo and 

colleagues [91]. Each line connects 1 task with 1 cognitive component. Tasks grouped with 

similar components are more closely positioned and their lines were assigned similar colors. 

Component C9, which largely overlaps the frontoparietal network, and task switching are 

highlighted to demonstrate that a given component can support multiple behaviors while a 

select behavioral task can engage numerous cognitive components, which are in turn 

supported by multiple overlapping brain regions. To characterize the consequences of 
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variability within a given aspect of brain functioning, we should work to catalogue how the 

brain functions as a unified whole to influence diverse sets of interrelated behaviors.
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Figure 4. Focus on the phenome
The collection of detailed and comprehensive high-dimensional phenotypic data will 

facilitate the study of relationships that link individual variability with illness risk across the 

lifespan. (A) Schematic representation of the complex interactions linking genetic and 

neurobiological variation with the full set of phenotypes expressed by an individual. At the 

base of the figure, heritable genetic variation (DNA) biases molecular and cellular processes. 

A network view of interacting molecular and cellular process is depicted as a graph, where 

individual processes are shown as nodes and process–process interactions as edges 

connecting the nodes. From there cellular and circuit functions emerge, up through the 

formation and maintenance of large-scale networks. Integrated functioning across the 

connectome influences the expression of complex demographic, clinical, and behavioral 

phenotypes. Readers should note that feedforward/feedback relations also link across the 

levels. Connectome and phenome data provided by [91, 142]. (B) The phenome is not static. 

The varying costs and benefits of behavior across environments results in complex fitness 

landscapes. Graph reflects a schematic example of the potential impact of behavior B1 in 

environment E1. (C) Fitness landscapes shift across the lifespan. Both brain functions and 

environments change across time. Behaviors demonstrate dissociable cost/benefit 

trajectories over the lifespan. Identical behaviors may have opposing effects fitness at early 

and late ages. These relationships need to be fully catalogued, allowing researchers to link 
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phenomena across levels, from genes and molecules through cells, circuits, networks, and 

behavior.
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