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The human brain is comprised of a dense web of interdigi-
tated functional networks. Understanding how the brain’s
complex functions give rise to human cognitive abilities in
both health and disease depends on unraveling the carefully
coordinated interactions between networked brain regions
and their responses to environmental change (Holmes &
Patrick, 2018). Historically, substantial progress was made
delineating this intricate architecture through postmortem
dissections in humans and tract tracing and lesion studies
in animals. Yet there remained many gaps in our under-
standing of how the brain influences behavior, particularly
psychiatric illnesses. The limitations of these labor-
intensive approaches have receded over the past 40 years
with the advent of in vivo imaging approaches such as
positron emission tomography (PET), electroencephalog-
raphy (EEG), electrocorticography (ECoG), and magne-
toencephalography (MEG; see Raichle, 2009, for a
historical overview). The introduction of functional mag-
netic resonance imaging (fMRI), in particular, has sparked
spectacular growth in psychiatry research.
Fueled by rapid methodological and analytic advances,

fMRI has come to dominate the clinical literature, allowing
us to study brain function in a rapid and noninvasive
manner across ever larger samples. These technological
developments have made it easy to become exceedingly
optimistic about the future of clinical neuroscience.
Although fMRI methods have evolved rapidly since the first
brain scans in the 1980s, there remain core approaches and
theoretical principles that can be used to understand the
current state of the field and anticipate future innovations.
Here we take a critical look at how fMRI measures can
inform our understanding of brain functions in psycho-
pathology. To help researchers select appropriate methods,
we will cover fMRI study design, analysis, and interpret-
ation and discuss some of the advantages and disadvan-
tages of each design and analytic choice.

EXPERIMENTAL APPROACHES

A central goal of clinical cognitive neuroscience is to
understand how common cognitive and neural systems

may differ in people with, or at risk for, psychopathology.
Among cognitive mechanisms we include perceptual pro-
cesses, such as stimulus detection or facial recognition;
salience-related processes, such as reward or threat detec-
tion; executive processes, such as cognitive control, emo-
tion regulation or decision making; and motor processes,
such as response initiation. Of course, there are many
more, with names and descriptions that often overlap
(Poldrack, 2010). The brain implements these cognitive
processes in a manner that is evident at different levels
of analysis, from molecular mechanisms (e.g., neurotrans-
mission) to large-scale networks (e.g., spike-timing-
dependent plasticity through which neurons assemble).
Clinical cognitive neuroscience uses an array of methods
to disentangle the complexities of psychopathology into
finer, potentially discrete, deficits in specific aspects of
brain biology. This approach is often most effective when
it builds on established behavior-brain research that
informs an understanding of individual differences. For
example, a good deal of work on working memory impair-
ments in psychosis patients extends upon foundational
working memory studies in humans (Park, Holzman, &
Goldman-Rakic, 1995) and nonhuman primates (e.g.
Funahashi, Bruce, & Goldman-Rakic, 1989).

Measuring the Brain When Performing Tasks

It is intuitive to ask how the brains of people with mental
illnesses differ while thinking. Pioneers such as Ingvar and
Franzen (1974) used a forerunner of PET imaging to study
resting cerebral blood flow (rCBF) in patients with schizo-
phrenia during a cognitively demanding task. Although
overall rCBF levels were similar to controls, in postcentral
sulcus it was relatively higher in patients with schizophre-
nia, whereas in prefrontal cortex it was relatively lower.
Thus began an era of function-based neuroimaging efforts
that have increased in power and sophistication in the
subsequent decades.
Table 13.1 delineates the four general approaches to

task-evoked fMRI that are commonly used, and Figure 13.1
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illustrates how these approaches differ in stimulus presen-
tation and associated models of the blood-oxygen-level-
dependent (BOLD) response, which reflects the concen-
tration of deoxygenated, relative to oxygenated hemo-
globin. A ratio that is altered by local neural activity
(Huettel, Song, & McCarthy, 2004; Logothetis et al.,
2001). Block designs are far and away the most robust,

and are therefore the most efficient, strategy for obtaining
maps of where the BOLD response is occurring in the
brain. A block design study consists of discrete “on” and
“off” periods, each lasting from tens of seconds to minutes
in duration. During the “on” times a stimulus is presented
or a behavior is elicited. These blocks are contrasted with
“off” periods that consist of rest, baseline, or alternate task

Table 13.1 Experimental approaches using functional magnetic resonance imaging

Method Application Strengths Limitations Key references

Block
design
(task
evoked)

Contrasts conditions
within an ongoing
task or between an
ongoing task and rest

Efficient data collection;
maximizes potential activation
differences

Difficult to attribute activation
to a specific cognitive
mechanism when contrasted
tasks differ in several
demands; difficult to exclude
errors from analysis; requires
task development

(Amaro &
Barker, 2006)

Slow
event-
related
design
(task
evoked)

Contrasts different
trial types or cognitive
demands sparsely
timed

Different events may be
intermixed in an unpredictable
manner; relatively few
assumptions about the nature of
the hemodynamic response; few
constraints on the interactions
(or dependencies) between
different cognitive demands;
behavioral results often
generalize to faster-paced
versions; trials that fulfill a
criterion (e.g., error trials) can be
examined

Because hemodynamic
response must return to
baseline between trials, fewer
trials can be collected; fewer
trials for the evaluation of
behavioral performance;
boredom due to slow pace;
requires task development

(Amaro &
Barker, 2006)

Fast event-
related
design
(task
evoked)

Contrasts different
trial types or cognitive
demands more
densely timed

As with slow event-related
designs, different events may be
intermixed; behavioral results
are more robust because more
trials are available; trials that
fulfill a criterion (e.g., error
trials) can be examined if
sufficiently independent

Hemodynamic response
function modeling required;
events must be sufficiently
independent; jittering time
between events or using
partial (catch) trials to make
events independent may
affect performance; requires
task development

(Amaro &
Barker, 2006;
Ollinger,
Shulman, &
Corbetta, 2001)

Hybrid
block/
event-
related
designs
(task
evoked)

Nests an event-related
design within a larger
block design to allow
multiple analyses

Allows for robust analyses
present in block designs;
additionally, trials that fulfill a
criterion (e.g., error trials) can be
examined separately

Hemodynamic response
function modeling required;
events only occur within the
context the block; requires
task development

(Braver,
Reynolds, &
Donaldson,
2003)

Intrinsic
function
(“resting
state”)

Examines on-going
activity in the absence
of specifically timed
tasks or cognitive
demands

Shorter development cycle;
shorter training and fewer task
demands facilitating data
collection in special-needs
populations; applicable to
patients asleep or under
sedation; easier to harmonize
across sites and easier to
combine data sets post hoc
facilitating larger sample sizes

Brain activity cannot be
related to specific cognitive
events (but see Smith et al.,
2009); group/individual
differences findings may
reflect differences in habitual
thought patterns rather than
ability to activate a region;
connectivity metrics affected
by subtle head motion

(Biswal et al.,
1995;
Smith et al.,
2013)
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states. For example, the Human Connectome Project
(HCP) collected seven tasks twice in block designs lasting
2‒5 minutes (Barch et al., 2013). During the HCP working
memory task, participants switched between performing a
2-back task (which required a running memory load of
two items) and a 0-back attentional control task for
25 seconds each. All brain areas with metabolic demands
when performing the task showed a rising BOLD response
that reached a steady state within 5‒6 seconds of the
beginning of the block and then declined within 5‒6
seconds when the cognitive load was removed. Because
the metabolic demands associated with observing and
responding to the stimuli were similar in the 2-back and
0-back conditions, a comparison between them would
likely show little differential visual or motor activity.
Instead, the biggest changes appeared in places where
there were greater demands when maintaining a running
load of two items. This strategy assumes that all items in a
given condition are similarly difficult and that no aspect of
the task (e.g., the occurrence of a repeated item) is of
particular interest. The robustness of block designs can
also be used to examine changes in activation across popu-
lations (e.g., case vs. comparison samples) or treatment
conditions. Haut, Lim, and MacDonald (2010) compared
2-back to 0-back activity, this time in people with schizo-
phrenia, to examine how cognitive training tasks changed
activity more than controls in several regions of prefrontal
cortex. Despite these advantages, block designs come with
a number of potential interpretive problems for clinical
research. For example, brain regions activated more in the
2-back than in the 0-back may be involved in many pro-
cesses besides a higher working memory load, such as
updating the stimuli after each trial, suppressing

interference, monitoring conflict, expecting and preparing
for another trial of the same kind, and experiencing frus-
tration or even futility. For reasons we’ll discuss further
below in “Interpretation,” performance differences
between groups on the different blocks can also present
a challenge, as the analysis of error trials is mixed together
with the analysis of accurate trials.
In order to examine discrete trials and address con-

straints of block designs, many experimenters have
employed event-related (later called “slow event-related”)
designs (Huettel, 2012) that leverage the hemodynamic
time-course associated with local regional neural activity.
This approach is characterized by large gaps in time
between stimuli, allowing the BOLD response to rise and
fall before presenting the next trial (which may have dif-
ferent tasks demands). Because this allows one to disen-
tangle more components of task performance, many
investigators gravitated toward this technique. For
example, in a study of context processing-related deficits
associated with the genetic liability to schizophrenia, Mac-
Donald, Becker, and Carter (2006) differentiated between
the task demand of maintaining a task representation,
which involved dorsolateral prefrontal cortical (DLPFC)
and was impaired in patients and first-degree relatives,
and that of overcoming conflict, which evoked the anterior
cingulate and was impaired in patients but not their rela-
tives. What’s more, these differences were observed on
correct trials, thereby partially controlling for individuals’
fluctuating task engagement. However, due to the slow
nature of the hemodynamic response, fewer trials can be
included using this approach, which provides reduced
statistical power relative to a block design.
One way to introduce more trials is to group them closer

together without allowing the hemodynamic response to
resolve fully, which is commonly called the fast event-related
design. This strategy owes its existence to several key con-
tributions. As illustrated in Figure 13.1, convolution models
for fMRI analysis (Friston et al., 1994) combined the time a
stimulus occurred with an expectation about how the
BOLD signal would respond. Subsequently, it was found
that the BOLD response could be summated across succes-
sive trials even with short intertrial intervals (Dale & Buck-
ner, 1997). This property of the BOLD signal allows task-
relevant activations to be predicted based on the expected
response to closely spaced stimuli and events, if the trials ‒
or events within the trial ‒ are sufficiently independent.
This provides the opportunity to analyze closely spaced
trials, or events within a task, drastically shortening the
study collection times and the associated burden on
research participants. For example, Poppe and colleagues
(2016) took advantage of this design using a paradigm that
required cue maintenance to control the response to a
subsequent probe. In this case, if the cue was an A, then
one would respond left to the probe, but if the cue was a B,
then a right response to the probe was correct. To disentan-
gle (to the degree possible) the relationships between the
cues and probes, jitter (i.e., pseudorandom variation) was

Figure 13.1 Different task conditions (gray boxes) and the cor-
responding convolution with a prototypical hemodynamic
response function predict the rise and fall of the BOLD time
course in an activated voxel across various experimental designs.
Time proceeds from left to right. Note, the subtraction method of
analysis (and derived brain maps) often compares the difference
between the extent to which a voxel’s time course resembles the
black predicted time course relative to the lighter grey.
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introduced into the interstimulus and intertrial intervals to
facilitate modeling these independently.
Hybrid designs are used when the robustness of a block

design is desirable, but where some questions can also be
addressed using the more specific information that comes
from examining individual trials. In such instances, one
can blend block and event-related designs. This technique
could be used to model individual trials within a block to
identify and remove error trials, examine how different
trials within a category interact with each other, or track
different time courses across regions. The overarching
point is that even as each design has various strengths
and limitations, they need not be mutually exclusive. With
planning, a given task might be conceptualized and ana-
lyzed from several perspectives, taking advantage of the
associated strengths of each.

Measuring the Brain without Tasks:
The “Resting State”

In addition to responding to stimuli, the brain also shows
reliable patterns of activity in the absence of explicit task
states or in so-called resting state designs (e.g., Biswal et al.,
1995). As the brain is not particularly good at resting, we
prefer the term intrinsic function or intrinsic functional
connectivity for what is being measured when the mind
is not directed to a particular task. The earliest clinical
cognitive neuroscience studies examining patients’ intrin-
sic brain functioning generally used PET to measure

glucose metabolism. For example, individuals with schizo-
phrenia display lower levels of rCBF in prefrontal and
temporal regions (Farkas et al., 1984). This raised the
question as to whether these differences reflected an
inability to use those brain regions (a direct result of
illness) or a disposition to use those brain regions less,
perhaps because due to distraction, fatigue or some other
factor (a downstream result of illness). This ambiguity led
this approach to fall out of favor for a period of time, yet a
number of advantages as well as promising empirical
observations have reestablished resting-state, or intrinsic
functioning, as a mainstay of neuroimaging.
Work in this domain by Biswal and colleagues (1995;

Figure 13.2A) suggested an intrinsic organization to the
brain that mirrored task-related functions. Their founda-
tional study revealed that even when the brain was not
engaged in a motor task, signal fluctuations in the motor
cortex were highly correlated with neighboring voxels as
well as spatially distinct regions associated with motor
functioning. Functional connectivity between brain
regions, such as reported by Biswal and colleagues, is
usually analyzed in terms of correlation, signal coherence,
or other temporal similarities in BOLD fluctuations. Pro-
viding converging evidence for intrinsic approaches to the
study of brain functions, Koch, Norris, and Hud-
Georgiadis (2002) combined diffusion-based and func-
tional methods to reveal that intrinsic correlations
between brain regions may depend on anatomic projec-
tions. This principle was expanded by Smith and

Figure 13.2 A summary of intrinsic connectivity analyses methods and cortical parcellations based
on in-vivo brain imaging. (A) Intrinsic fluctuations in the fMRI BOLD signal exhibit patterns of
covariation within functionally connected brain networks in the absence of overt task performance.
Map of motor network from the seminal work by Biswal and colleagues (1995) as adapted by Vincent
et al. (2006). (B) Selection of common analyses methods for intrinsic connectivity analyses (see
Table 13.3). (C‒E) Intrinsic fluctuations can be used to derive in-vivo brain parcellation. (C) Shen et al.
(2013), (D) Power et al. (2011), and (E) Schaefer et al. (2018). (F) Multimodal parcellation using
intrinsic connectivity, relative myelin mapping, cortical thickness and task-based fMRI
(Glasser et al., 2016).
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colleagues (2009), who used a statistical algorithm called
independent components analysis to identify a number of
distributed functional networks (about 20 different such
“components”) and showed that the structure of these net-
works mapped quite closely to activation patterns from a
large-scale meta-analysis of broad task categories. For
example, meta-analysis indicated that regions of left pre-
frontal cortex and posterior parietal cortex frequently coac-
tivated, alongwith a region of anterior cingulate cortex. The
tasks most likely to coactivate these regions were working
memory, explicit memory and language tasks. The observed
locations closely resembled a network of voxels that coacti-
vated at rest among a much smaller cohort of volunteers (a
set of findings that has been replicated, e.g., Wisner et al.,
2013), suggesting that intrinsic fluctuations may reflect
coactivation among the regions with shared profiles of
task-evoked function (Deco, Jirsa, & McIntosh, 2011).
Intrinsic approaches provide a new complement to task-

based study designs, and the ease of collection and flexibil-
ity of intrinsic analyses has led to a rapid rise in their
popularity. This is particularly true for clinical researchers,
as the derived markers of intrinsic network function are
more widely applicable than traditional measures of task-
based fMRI. Since intrinsic network function can be
assessed during sleep and under anesthesia, this functional
mapping approach may be widely implemented in diverse
populations including children, non-English-speaking par-
ticipants, developmentally delayed patients, and patients
who are under sedation. The promise of resting-state scan-
ning has undergirded the accumulation of large-scale data
sets that would be difficult if not impossible to obtain
through more traditional task-based approaches. Open-
access samples in the thousands are now widely available
to the broader scientific community, such as the 1000 Func-
tional Connectomes Project (Biswal et al., 2010), the Brain
Genomics Superstruct Project (Holmes et al., 2015), the
Human Connectome Project (Van Essen et al., 2013), and
the UK Biobank (Ollier, Sprosen, & Peakman, 2005).
Despite the putative simplicity of intrinsic function studies,

there remain a number of outstanding questions when
acquiring and interpreting these data: what are the implica-
tions of collecting data with eyes open or closed (Van Dijk
et al., 2010), with or without eye tracking, or if performing a
low-level periodic response task (Krienen, Yeo, & Buckner,
2014)? How much data need to be collected to measure
properties such as connectivity strength or network coher-
ence reliably (Zuo et al., 2014)?This is a dynamic areaofwork
with constantly emerging findings. Whatever the answers
may be, intrinsic functional connectivity does have heritable
characteristics (Ge et al., 2018) thatmaybe informative about
the nature of psychopathology (Baker et al., 2014).

Measurement and Neurometrics

Whether observing the brain during task performance or
not, it is important to consider several general points as we

move from asking “basic” questions regarding how the
brain works to individual differences questions like how
do brains function differently. Individual differences ana-
lyses evoke the 4Rs of measurement: robustness, repeat-
ability, reliability, and replicability. Robustness is the
likelihood a given analytic approach will provide a con-
sistent answer. Repeatability is the likelihood that the
same pattern of findings will occur if the same group is
measured again. Reliability is the extent to which the
participants are at the same point in a distribution when
measured again, showing a consistent pattern of individ-
ual differences. Finally, replicability is the likelihood that
the same pattern of findings will occur in a new sample.
The latter three, repeatability, reliability, and replicabil-

ity, may be affected by various factors, such as caffeine
(Laurienti et al., 2002), nicotine (Thiel & Fink, 2007), and
ethanol (Seifritz et al., 2000) intake, but also by more
subtle variables such as glucose levels (Anderson et al.,
2006) and cardiac variability (Shmueli et al., 2007). Before
becoming overwhelmed, the investigator should consider
the extent to which these factors will affect changes in the
pattern of evoked BOLD response or intrinsic connectivity
for which they will be searching. Similarly, are these
factors going to be a source of noise (reducing power) or
biases (introducing confounds)?

ANALYSIS

Analytic approaches for fMRI data have rapidly increased
in complexity since the initial discovery of the BOLD con-
trast and the early efforts to use it to map human mental
operations (for review see Raichle, 2009). Nevertheless,
there are several principles that can be used to understand
the current state of the field, as well as guide our anticipa-
tion of what advances may wait on the horizon. In this
section, we will introduce the methods most frequently
used in event-related and intrinsic fMRI analyses, briefly
discussing key advances that have shaped the field. For
ease of interpretation, the analytic techniques, as well as
their associated strengths and limitations, are presented in
Tables 13.2 and 13.3. Critically, while these approaches
can be applied individually, often two or more will be
utilized within the same set of analyses.

Subtraction, Correlation, and Contrast Analyses

The evolution of block, fast-event-related, and hybrid
fMRI designs was closely followed by the development of
associated analytic methods. Initially, fMRI researchers
leveraged approaches adapted from positron emission
tomography where signal quality was greatly enhanced if
participants were placed in a standard stereotaxic, or
common, physical space (Fox et al., 1988). Once the indi-
vidual participant data is registered to a common refer-
ence space the most straightforward and broadly applied
method for obtaining results is to perform a simple
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Table 13.2 Analytic techniques to examine task-evoked data sets

Method Application Strengths Limitations
Key
references

General linear
model

Estimates the
contribution of known
predictors to BOLD signal
fluctuations

Mathematically simple,
relatively easy to
interpret, available in
standard analysis
packages; can include
multiple independent
variables (e.g., scanner
drifts, participant motion,
etc.)

Relies on assumptions
including a consistent
hemodynamic response
throughout the brain and
the temporal stability of
noise terms

(Friston et al.,
1994)

Psychophysiological
interaction

Examines the interaction
between a task contrast
of interest and the
functional coupling
between brain areas

Can reveal a task-specific
change in correlation
between areas that may
not be evident through a
shared effect of task

Can only examine a single
source area; causal
relations cannot be
inferred

(Friston
et al., 1997)

Structural equation
model

Assesses the degree to
which experimental
manipulations influence
the functional
connectivity of brain
regions

Can be used for both
exploratory and
confirmatory testing;
based on prior
knowledge of brain
structure/function; can
estimate causal relations
and be used across
multiple regions
simultaneously

Can require a priori
assumptions about
causality, potentially
obscuring other relations;
lacks temporal
information; assumes
linearity

(McIntosh
& Gonzalez-
Lima, 1991)

Dynamic causal
model

Uses biologically plausible
neuronal models of the
BOLD response to
estimate the influence of
experimental context on
the functional coupling
among brain regions

Uses hidden interactions
at the neuronal level to
study observable shifts in
BOLD response; models
bidirectional and
modulatory interactions
(for a comparison of SEM
and DCM approaches see
Penny et al., 2004)

Relies on pre-specified
models and the
inferences provided are
only as valid as the priors
used in the estimation
procedure

(Friston,
Harrison, &
Penny, 2003)

Granger causality
model

Assesses the degree to
which one time series can
predict another

Does not rely on a priori
assumptions (e.g., regions
of interest and associated
connection)

Assumes (local)
stationarity, incorrect
inferences can result from
measurement noise and/
or hemodynamic response
latencies across brain

(Kamiński
et al., 2001)

Meta/mega-analysis Assesses relations across
multiple imaging data
sets.
Meta-analysis refers to
the pooled analysis of
published results; mega-
analysis refers to the
pooled analysis of raw
data

Can increase power due
to the large number of
studies/participants
available for analysis;
other approaches (e.g.,
estimates of effective
connectivity) can utilize
meta/mega-analysis
defined regions of
interest

Experimental designs may
not be uniform and/or
adequately sample the full
spectrum of behavior and
function; meta-analyses
often consider the
distribution of activation
peaks, rather than each
study’s/contrast’s
distributed pattern of
activity; relieson traditional
contrast analyses, this can
serve as a confound if the
process of interest is not
successfully isolated

(Fox, Parsons,
& Lancaster,
1998;
Laird et al.,
2005)
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subtraction across conditions of interest. Subtraction
techniques, or more generally correlation analyses, are
based on the expectation that the voxels/brain regions
participating in a psychological or cognitive process
should show dissociable functional responses during the
completion of associated tasks. Rather than revealing
absolute levels of cerebral blood flow or metabolism
linked to a cognitive process, contrast analyses reveal rela-
tive changes in BOLD response across conditions. By aver-
aging the time points acquired during an experimental
condition and subtracting the average of all the time
points associated with a control condition, differing in
only one property, the brain regions associated with a
cognitive process of interest can be identified.
While a growing proportion of fMRI studies go beyond

subtraction logic to include parametric effects where the
independent variable has a number of levels (e.g., task
difficulty, stimulus intensity, monetary rewards), simple
subtraction techniques are a powerful analytic approach.
With an appropriate task design, they can be applied to
preprocessed fMRI time courses using standard statistical
techniques. Historically, subtraction analyses have pro-
vided foundational discoveries, characterizing the aspects

of brain function that support key facets of cognition and
behavior across health and disease. For example, consist-
ent with a role in the modulation of affective functions,
differential amygdala responses have been observed
during the visual processing of emotional and neutral
facial expressions in healthy populations (Breiter et al.,
1996). Dysregulated amygdala response to emotional stim-
uli is hypothesized to underlie the onset and maintenance
of affective illness (Mayberg, 1997). In line with these
theories, in patient populations subtraction techniques
have revealed abnormal amygdala responses in disorders
marked by affective impairments (Price & Drevets, 2012)
and in populations at increased genetic risk for onset
(Smoller et al., 2014).

General Linear Models

The introduction of single-trial or event-related fMRI
designs provided researchers the opportunity to separate
mental operations into discrete moments in time, allowing
for the differentiation of their associated fMRI signals
(Huettel, 2012). The associated shift from representing

Table 13.3 Analytic techniques of intrinsic brain function

Method Application Strengths Limitations
Key
references

Seed-based
correlations

Estimates the correlation
between the BOLD signal in
a predefined regions of
interest with other regions,
or rest of the brain

Mathematically simple and
easy to interpret

Requires the a priori
selection of regions; may
provide illusory specificity

(Biswal
et al., 1995)

Regional
homogeneity

Uses Kendall’s coefficient
concordance to assess the
similarity of the time series
of a given voxel to those of
its nearest neighbors

Mathematically simple and
easy to interpret

Requires the a priori
selection of regions;
sensitive to spatial
smoothing and the size of
the region of interest

(Zang et al.,
2004)

Local-distant Takes into account local
regional connections as well
as remote or distant
connections outside of a
defined area

Allows for the analyses of
relative weighting of local or
distant connectivity in a
region

Can conflate real cortical/
anatomical distance with
Euclidean distance

(Sepulcre
et al., 2010)

Principal
component
analysis

Creates uncorrelated
variables from best-fitting
linear combinations of the
variables in the raw data;
reduces the dimensionality
of complex data types

Can reveal hidden,
simplified, features in high-
dimensional data; does not
require a priori task models
or estimates of BOLD
response

Based on a strong
assumption of linearity and
orthogonality in the
resulting components;
sensitive to noise and
assumes a high signal-to-
noise ratio in the data

(Friston
et al., 1993;
Viviani,
Grön, &
Spitzer,
2005)

Independent
component
analysis

An extension of principal
component analysis that
separates data into spatially
or temporally independent
patterns of activity

Few a priori assumptions;
not restricted to deriving
orthogonal components

Components are assumed to
be statistically independent

(McKeown
& Sejnowski,
1998;
Calhoun
et al., 2001)
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BOLD responses as static across blocks of time to con-
sidering moment-to-moment fluctuations allowed
researchers to leverage dynamic analysis methods. In this
area, general linear models (GLMs; introduced for fMRI
analyses by Friston et al., 1994) are the primary analysis
approach utilized in task-based research. The events in
event-related designs often occur so rapidly that their
associated BOLD responses overlap. GLM analyses
assume that the observed BOLD signal is comprised of a
linear combination of experimental factors (thereby
allowing overlapping responses) and an uncorrelated
noise term. A GLM analysis identifies voxels where the
signal changes in response to experimental conditions, or
events, calculating the significance/extent of effects based
on how well the observed data fits the predicted model.
These GLM-based approaches form the theoretical scaf-
folding that underlies most forms of fMRI data analysis,
for instance the regression, prediction, and data explor-
ation approaches detailed below. Importantly, GLM ana-
lyses are typically conducted in a mass univariate manner
across each voxel, and there are several assumptions to
keep in mind when utilizing GLM-based approaches that
can constrain our interpretation of the results (see Monti,
2011). These include the use of a single model (design
matrix) throughout the brain, that noise varies consist-
ently across all time points (e.g., baseline relative to a
contrast of interest), and the independence of associated
statistical tests.

Multivariate Modeling and Predictive Approaches

An important limitation of traditional GLM-based analytic
techniques is that they treat each voxel as independent,
assessing if the signal within these discrete data points
fluctuates in response to a task condition of interest. They
do not account for the possible contribution of complex
multivariate relations linking multiple voxels. As the field
has developed beyond this mass univariate approach, an
increased emphasis has been placed on computationally
sophisticated approaches for identifying spatially distrib-
uted patterns of brain activity (e.g., multivoxel pattern
analysis). For a more thorough treatment of the tech-
niques from the field of machine learning and analytic
approaches where specific mental states or task contexts
are decoded from distributed activity patterns readers are
referred to Chapter 34. In brief, these multivariate
approaches are typically implemented in a two-step pro-
cess. First, a classifier is trained to distinguish the occur-
rence of events for different conditions within a subset of
the available data. Second, the trained model is then
applied to an independent or held out sample where the
classifier attempts to predict the events of interest. These
approaches hold promise as a potential diagnostic tool for
psychiatric illness, and their flexibility allows for their
integration with other complementary processing and
analysis techniques (Rosenberg, Casey, & Holmes, 2018).

For instance, machine-learning approaches have been
used to discriminate male from female participants accur-
ately (Chekroud et al., 2016), identify dissociable cognitive
trajectories in Alzheimer’s disease (Zhang et al., 2016)
with gross morphometric estimates of brain anatomy,
and predict individual participant attentional capacity,
disease status (e.g., ADHD; Rosenberg et al., 2016), or
symptomology through analyses of large-scale network
function (e.g., presence of psychosis; Reinen et al., 2018).

Network Modeling

Recently, researchers have begun to shift their emphasis
from the study of the specialization or segregation of brain
functions in isolated regions toward an analytic frame-
work that targets functional integration, working to char-
acterize how signals covary across spatially distinct
regions (for review see Sporns, 2014). These distributed
processing models of brain function provide a powerful
method to explain complex cognitive functions, individual
variation, and the behavioral expression of psychiatric
illness. Network models allow researchers to represent
brain systems as distributed sets of neural elements and
their associated interconnections. The generation of these
network models requires partitioning or parcellation
aspects of the brain into regions, or nodes, which share a
consistent set of features. Broadly, brain networks reflect
two different categories. Structural networks that describe
the anatomical wiring properties of the brain, and func-
tional networks reflect interactions among time series
(e.g., correlations) across anatomical parcels or regions
of interest. Unsurprisingly, network approaches encom-
pass much of the current research on brain functions
ranging from the biophysical modeling of task data
through the estimation of the integrity of resting-state
networks. Figure 13.2 displays a collection of population-
intrinsic network parcellation schemes. Readers should
note that the distinction between event-related (task-
evoked) and resting-state (intrinsic) analytic techniques
is in many ways arbitrary. These methods each probe
specific features of brain function; with an appropriate
study design they can be applied across data types.

Task-Evoked Functional Connectivity

These analyses can be broadly separated into two classes.
The first examines functional connectivity, or the tem-
poral correlation of observed BOLD responses between
remote neural areas, similar to the intrinsic techniques
detailed below. The second consists of model-based
approaches that assess effective connectivity, or the puta-
tive influence one brain system or region may exert on
another. Prototypical effective connectivity analyses
include psychophysiological interaction, structural equa-
tion (McIntosh & Gonzalez-Lima, 1991), dynamic causal,
and Granger models (Friston et al., 2003).
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Psychophysiological interaction, for example, assesses
whether connectivity varies between spatially distant
brain regions in different psychological/task contexts
(Friston et al., 1997). The presence of a psychophysio-
logical interaction suggests that regional responses in
the source area to an experimental or psychological
factor are modulated by signals from a distal brain region.
These approaches have revealed a host of key discoveries,
for example, the aberrant development of amygdala-
prefrontal connectivity following maternal deprivation,
potentially reflecting an ontogenetic adaptation in
response to early adversity (Gee et al., 2013).

Intrinsic Functional Connectivity

The convergence of new imaging technologies and
increased computational resources has provided tools to
map both local and distant connections in the brain
(Holmes & Yeo, 2015). Recent work in this domain has
established a strong correspondence between the struc-
ture of intrinsic (resting state) and extrinsic (coactivation)
brain networks, suggesting that the brain’s functional
architecture at rest is closely linked to cognitive function
(Smith et al., 2009; Tavor et al., 2016). Aberrant patterns of
connectivity within these networks are evident across
many major mental disorders, indicating that their break-
down can lead to diverse forms of psychological dysfunc-
tion (Buckholtz & Meyer-Lindenberg, 2012). For instance,
impaired connectivity within the frontoparietal control
network, which encompasses portions of the dorsolateral
prefrontal, dorsomedial prefrontal, lateral parietal, and
posterior temporal cortices, as well as corresponding
aspects of the striatum and cerebellum (Yeo et al., 2011),
is believed to underlie executive functioning deficits in
psychotic illness (Baker et al., 2014; Reinen et al., 2018).
A growing literature implicates frontoparietal network
impairments as transdiagnostic markers of psychopath-
ology (Cole, Repov, & Anticevic, 2014). A set of relation-
ships may emerge through the generation of symptoms
that are domain-specific (e.g., impaired executive func-
tion), but cut across many pathologies (Buckholtz &
Meyer-Lindenberg, 2012).

There are myriad ways that network functions can be
probed with intrinsic approaches (Table 13.3; Figure 13.2).
From flexibility in the definition of networks of interest,
including the use hypothesis derived “seed” regions
defined through meta-analyses of task data (Yarkoni
et al., 2011) and population atlases of network function
(Schaefer et al., 2018; Yeo et al., 2011), through the use of
complex dynamic (Hutchison et al., 2013; Reinen et al.,
2018) and graph theoretical techniques (Sporns, 2014).
Approaches that allow researchers to map functional net-
work topography down within a single person, for
example, are critical for clinical intervention and the study
of individual differences (Kong et al., 2019; Wang et al.,
2015). Research in this domain has led to the development

of cortical parcellation methods to accurately map the
brain’s intrinsic functional organization at the individual
level. Functional networks mapped by these techniques
are highly reproducible among participants and effectively
capture intersubject variability (Wang et al., 2015). Pro-
viding converging evidence for the use of intrinsic con-
nectivity when defining participant-specific network
topographies, these approaches have been validated by
invasive cortical stimulation mapping in surgical patients,
suggesting potential for use in clinical applications.
One key factor to consider across all fMRI analyses, but

particularly those that examine functional connectivity, is
the impact of participant motion. This is a concern for
clinical researchers who frequently have to contend with
study populations that differ markedly in terms of both
disease status and data quality. In the area of intrinsic
analyses, for instance, motion generates nonlinear effects
on functional connectivity that can either artificially
induce or obscure hypothesized results (Van Dijk,
Sabuncu, & Buckner, 2012). While these effects cannot
simply be regressed out, there are processing approaches
that can limit the impact of motion on substantive findings
(e.g., motion scrubbing; Ciric et al., 2018; Power et al.,
2014). Additionally, given the availability of large-scale
fMRI databases that measures of brain structure and func-
tion as well as multiple domains of cognition, behavior,
and genetics (e.g., Holmes et al., 2015), some research
groups have elected to carefully match patient and healthy
comparison samples on the basis of data quality (e.g.,
Baker et al., 2014). The influence of data quality on con-
nectivity analyses is a key point of consideration when
interpreting case-control analyses, as patient populations
often move more than healthy comparison samples. In the
next section, we’ll turn to several additional problems
faced by clinical cognitive neuroscience.

INTERPRETATION

If brain functions are involved in mental illness, it would
seem that methods akin to taking pictures of the living
brain and then developing them would provide an object-
ive, biological perspective on how that occurs. Of course,
there are any number of reasons this simplistic optimism
may not hold, but six criticisms of clinical cognitive neuro-
science studies using neuroimaging stand out as particu-
larly important to avoid. We hope the reader will note the
challenge of satisfying all these constraints within a
single study.

Mechanistic Specificity

The challenges of behavioral experimental psychopath-
ology transfer quite directly to clinical cognitive neurosci-
ence and neuroimaging in particular. A prominent
challenge is the difficulty of demonstrating that a deficit
in performance on a task is mechanistically relevant to the
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disorder and not an epiphenomenal, or secondary, effect
associated with the presence of illness. Deficits observed in
isolation are uninterpretable. For example, when patients
perform worse on a facial affect recognition task and have
reduced fusiform gyrus activation we are tempted to con-
clude that these two features are linked to the pathology.
Yet the link may be tenuous. Rather than having a role in
the symptoms of the disorder, the association between
performance and brain activity may result from an earlier
perceptual impairment, attention lapses, reduced effort on
the task, or any of a number of other failures. More com-
pelling would be to show that patients are worse on facial
affect recognition relative to another task demand meas-
ured with equivalent discriminating power, or ability to
distinguish between the groups being measured (see
Salem, Kring, & Kerr, 1996, for this particular compari-
son). Such deficits have been called differential deficits,
mechanism-specific or specific cognitive deficits (for
review, see Macdonald, 2015). Experiments using one con-
dition, without a second condition that has similar levels
of discriminating power, are obviously not up to this
standard of evidence. More subtly in experiments with
multiple conditions, if the condition of interest is meas-
ured with more discriminatory power, then patients may
perform worse on it without actually tapping a mechan-
ism related to the disorder. That is, the difference between
patients and controls may derive from a nonspecific raft of
difficulties patients face when performing behavioral
tasks.

Causality Confound

This confound refers to the concern that group differences
in brain activity that occur when one group shows differ-
ences in performance may not be interpretable (Gur &
Gur, 1995). In this case we wish to conclude that the
difference in brain activation causes the observed per-
formance differences, however we must also rule out the
possibility that both the activation and performance dif-
ferences reflect another, perhaps unmeasured, impair-
ment. For example, lower motivation, compliance or
visual acuity, misunderstanding the task, higher distress,
or any number of other failures could also impair per-
formance and reduce task-related brain engagement. This
challenge has caused a great deal of aggravation in clinical
research because it runs counter to the goal of demon-
strating mechanistic specificity (discussed above), which
alone is quite a daunting task.
Several approaches to this conundrum have been sug-

gested, none of which fully addresses all of the potential
concerns. The least satisfying approach has been to use
tasks on which patients are unimpaired but which tap into
a known deficiency (such as using a very easy working
memory task). This is generally accomplished by taking
advantage of a ceiling effect, rather than making the
unmeasured impairment irrelevant. Three other

approaches match performance in other ways. One way
to match performance is to select patients and controls
from their broader population distributions based on who
performs at a comparable level. This solution falters
because of the problem of generalization to the popula-
tions of interest. Another way to match performance is to
train participants differently so that those who struggle
more with the task receive more practice than those who
naturally perform it better. This solution can be critiqued
in so far as tasks that have become more automated often
use different brain areas compared to more novel tasks.
The third way to match performance is to titrate the diffi-
culty of the task so all participants, and therefore groups,
perform equally. This may be an ideal solution in many
cases, however it means that group differences in acti-
vation reflect, in part, differences in the tasks they are
performing. A final approach we have used is to examine
only accurate trials using an event-related analysis, sug-
gesting that the participant was engaged in the task during
a given trial. One criticism of this approach is that to the
extent that participants can respond accurately simply by
chance then some proportion of those trials may still
reflect an unmeasured spurious impairment. A second
criticism is that it is overly conservative, insofar as part
of the deficit of interest is the inability to respond accur-
ately, and in this case there will be no group differences in
brain regions that may be generally more difficult for
patients to engage. These strategies and critiques are all
an extension of concerns that come from using a quasi-
experimental methodology, with both within- and
between-subject effects. Whereas the quest for mechanis-
tic specificity leads us to test within-subject effects, we are
still hampered from strong causal claims by the challenges
of differences in performance.

Diagnostic and Symptom Specificity

Diagnostic specificity refers to the extent to which an
impairment is disorder-specific versus common across a
number of disorders. This concern arises especially from
testing patients sampled from a single categorical
diagnosis. For example, early findings that patients with
schizophrenia showed impairments in dorsolateral pre-
frontal cortical functioning were greeted with excitement
(Ingvar & Franzen, 1974). Subsequent findings of DLPFC
dysfunction in many other disorders, from depression
(Goodwin, 1997) to substance abuse (Goldstein et al.,
2004), may suggest that DLPFC dysfunction is less a cause
of psychotic symptoms and perhaps more of a general
psychopathology liability factor. Strikingly, a recent
meta-analysis comparing task-related brain activation in
people with a psychiatric illness and healthy controls
reported few differences between the diagnostic con-
structs in terms of the distribution of case-control effects
across the brain (537 studies, total n = 21,427; Sprooten
et al., 2018). The challenge of diagnostic specificity is not
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limited to categorical discrimination, however. In the era
of metastructural approaches to diagnosis (Holmes & Pat-
rick, 2018), specificity refers to showing that an impair-
ment relates more closely to a particular branch of
psychopathology (e.g., thought disorder) than to other
branches (e.g., externalizing or internalizing), or to gen-
eral psychopathology (Lahey et al., 2012). This interpret-
ive challenge can be addressed rigorously in a quasi-
experimental design. Using a between-subjects design
one can show that patients with an equal level of dysfunc-
tion with a different diagnosis show either performance or
brain activation differences. Using a within-subject
design, one can show that performance or brain activation
differences correlate significantly more with one symptom
factor relative to another using a Meng’s Z or other appro-
priate test for correlated correlation coefficients. These
complementary approaches allow researchers to demon-
strate the presence of case/control differences in an aspect
of brain biology and provide evidence that associated pat-
terns of individual variability link with shifts in associated
behaviors.

Forward and Reverse Inference

The vast majority of neuroimaging research uses an
approach termed “forward inference” when probing the
underlying biological architecture that supports cognitive
functions (Henson, 2006). For example, when researchers
manipulate stimuli to determine how the brain responds,
forward inference proposes that a given experimental con-
dition causes changes in local brain activity. Thus, dissoci-
able BOLD responses can be used to distinguish between
competing cognitive functions or theories. Critically,
because forward inference is a correlational approach
(see “Subtraction, Correlation, and Contrast Analyses”
above), researchers cannot infer that the observed pat-
terns of brain activity are either necessary or sufficient to
support the associated cognitive process. However, as
noted below, these shortcomings can be addressed
through the integration of complementary methodology
across levels, for instance the optogenetic modulation of
neural activity within freely moving animals.
“Reverse inference” is a different inferential strategy

utilized by much of the field, at least informally, and
fraught with controversy. Here, researchers make a claim
about the engagement of a specific cognitive process based
on the activation of a given brain region (Poldrack, 2006).
As an example, a researcher might observe that patients
with schizophrenia exhibit heightened amygdala
responses to images of scenes (e.g., mountains, plains,
forests), leading them to erroneously conclude that scene
viewing is associated with the experience of fear in psych-
otic illness. This sort of inference is common within the
clinical literature where the core cognitive processes
underlying psychiatric illnesses remain unknown. Reverse
inference provides a useful deductive tool for expanding

our understanding of the underlying brain mechanisms
supporting behavior. However, this is a particularly weak
standard of evidence, insofar as brain regions and net-
works generally activate in response to many different
demands (Poldrack, 2006).
The issues pertaining to reverse inference are a wide-

spread concern. Clearly, researchers should be cautious
when making claims regarding their results, particularly
when the functional properties of a given region have yet
to be fully established, or in the absence of converging
evidence from other methods. Even factors outside of a
researcher’s control can influence the accuracy of infer-
ences, such as the number of voxels in a region of interest
(ROI) or the selectivity of response in a given region of
interest. Despite these limitations, reverse inferences can
be exceptionally useful when applied judiciously, allowing
researchers to relate cognitive processes across distinct
theories and experimental contexts (Henson, 2006).
Reverse inference can also be used to generate hypotheses,
particularly when based on real data. Critically, both
reverse and forward inferences can be formalized within
a probabilistic framework. They can then be used for
meta-/mega-analysis where they provide the opportunity
for researchers to map links across diverse neural, cogni-
tive, and disease states. These models provide the field
with a powerful tool when coupled with the meta-analytic
databases resulting from the recent development of text-
mining and machine-learning techniques (Yarkoni et al.,
2011).

Regional Differences in Sensitivity

Whenever we write that patients are impaired in one brain
region, we imply that they are not impaired in the other
brain regions examined. However, this implication is only
true of other regions that we have measured at least as
accurately, or sensitively, as the region where we found
the group difference. The extent to which these other
brain areas actually are measured as sensitively is largely
ignored in the clinical imaging literature. Signal loss and
susceptibility artifacts arise as a result of magnetic field
inhomogeneities. In BOLD images, the decay in recover-
able signal is exacerbated in regions where the brain is
adjacent to air (e.g., sinus cavities). Clear spatial variation
in voxel-level temporal SNR (the mean of the signal at
each voxel over the BOLD run divided by the variance) is
evident across the cortical mantle (Holmes et al., 2015).
The associated problem is simple to illustrate: brain
regions A and B are both impaired in patients, however
brain region A (say the anterior cingulate) is measured
with very good signal to noise and region B (say the orbi-
tofrontal cortex, subject to susceptibility artifact) is meas-
ured with low signal to noise. In reporting our findings
without acknowledging these differences in SNR, we end
up implying that region B is unimpaired. We see the grow-
ing interest in neurometrics, the study of imaging
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measurement akin to psychometrics, as an important
development in clinical cognitive neuroscience (Poppe
et al., 2013). A ready-to-hand check on this assumption is
to examine signal-to-noise maps across the brain to see
that the areas implicated in group differences are not
simply those with the highest signal-to-noise.

Cross-Modality Integration

fMRI provides a remarkably powerful technique for
researchers to measure and map the functional networks
in the human brain in both health and disease, albeit with
the limitations inherent to all non-invasive approaches.
For instance, recent fMRI work has demonstrated corres-
pondence across the topographic structure of intrinsic and
task-evoked functional networks of the human brain, sug-
gesting that the features of the resting brain are closely
linked to cognition (Crossley et al., 2013). Yet an inte-
grated understanding of the complex neurobiological
architecture of the human brain, from molecules through
cells, circuits, and functional networks, will not be pos-
sible with a single method or approach. Rather, progress
in clinical neuroscience will be made through the com-
bined efforts of researchers working across levels of ana-
lyses and species (Holmes & Patrick, 2018). In this regard,
work that can join the heterogeneous information pro-
vided through distinct analytic approaches, including gen-
etics, brain metabolism, anatomy, electrophysiology, and
behavior, has the potential to provide deep insights into
the pathophysiology of psychiatric illness. The incorpor-
ation of methods that directly manipulate brain function,
for instance lesion and optogenetic approaches in animal
models or transcranial magnetic stimulation in humans,
can allow researchers to test the causal relations between
brain and behavior observed in fMRI (e.g., Deng, Yuan, &
Dai, 2018). Coupling molecular and genetic approaches
with fMRI, as another example, can nominate gene
profiles that preferentially associate with functional
brain networks (Anderson et al., 2018; Richiardi et al.,
2015), revealing the molecular machinery of network
communication.

SUMMARY AND FUTURE DIRECTIONS

This chapter sought to bridge between the basic experi-
mental world of cognitive neuroscience and that of clinical
research. We hope that basic researchers will find in it
links to questions they want to resolve when entering the
correlational science of individual differences and clinical
problems. Clinical researchers, in turn, should find here
the tools to inform a clinical cognitive neuroscience
approach to their populations, or the ideas needed to be
informed consumers of such research. But whether the
reader is more at home with a basic or a clinical perspec-
tive, clinical cognitive neuroscience remains an uncanny

domain in which the most important achievements seem
to be just over the horizon.
On the one hand, advances in methodology and our

understanding of brain functions seem to be advancing
at an unprecedented speed. Within the last several years,
there have been developments in spatial and temporal
resolution of MRI equipment, larger samples allowing us
to observe subtle effects, a growing number of algorithms
to identify meaningful signals, and studies of the effects of
genes on brain functioning, promising to remake the land-
scape of clinical cognitive neuroscience. At the same time,
much of this excitement is familiar from previous episodes
in which the field was enthusiastic about the potential of
widespread noninvasive imaging (in the 1990s) and ever-
increasing magnetic field strength (in the 2000s). While
technological advances will continue to allow us to ask
new questions, we should be sober about how these
changes will affect our understanding of, and ultimately
our ability to help, people with mental illness. The field is
uncanny because that “just over the horizon” feeling
drives us forward, but at the same time we need to gird
ourselves for the likelihood that new insights may only fill
in a few more pieces of a very large puzzle.
Ultimately, our understanding of psychopathology will

not come from MRI, a high-throughput genetic chip, or a
sophisticated data-mining algorithm. While these will con-
tinue to provide new and suggestive leads – and may even
ultimately provide crucial elements for diagnosis and
prognosis – such technologies cannot bridge the final gap
between the biological measurement and the fundamental
experience of distress, threat, or craving that make up
the core of psychopathology. Researchers who are well-
studied in these experiences, and those with firsthand
knowledge, will need to work on both sides of the
ledger – with these new sources of data, but also with the
broad array of people’s thoughts, feelings, and experi-
ences, to assemble the final pieces of the puzzle of mental
illness.
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