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Transcriptional and imaging-genetic association of
cortical interneurons, brain function, and
schizophrenia risk
Kevin M. Anderson 1, Meghan A. Collins1, Rowena Chin1, Tian Ge2,3, Monica D. Rosenberg 1,4 &
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Inhibitory interneurons orchestrate information flow across the cortex and are implicated in

psychiatric illness. Although interneuron classes have unique functional properties and spatial

distributions, the influence of interneuron subtypes on brain function, cortical specialization,

and illness risk remains elusive. Here, we demonstrate stereotyped negative correlation of

somatostatin and parvalbumin transcripts within human and non-human primates. Cortical

distributions of somatostatin and parvalbumin cell gene markers are strongly coupled to

regional differences in functional MRI variability. In the general population (n= 9,713),

parvalbumin-linked genes account for an enriched proportion of heritable variance in in-vivo

functional MRI signal amplitude. Single-marker and polygenic cell deconvolution establish

that this relationship is spatially dependent, following the topography of parvalbumin

expression in post-mortem brain tissue. Finally, schizophrenia genetic risk is enriched among

interneuron-linked genes and predicts cortical signal amplitude in parvalbumin-biased

regions. These data indicate that the molecular-genetic basis of brain function is shaped

by interneuron-related transcripts and may capture individual differences in schizophrenia

risk.
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Ramón y Cajal theorized that the functional diversity of the
human brain arises, in part, from the vast assortment of
neurons that pattern cortex1. Inhibitory interneurons are

the most varied neuronal class2, exhibiting divergent morpholo-
gical and physiological properties while coordinating information
flow across the brain’s collective set of connections (functional
connectome)3. Converging animal and human work provides
evidence for the role of interneurons in healthy brain function as
well as their dysregulation in psychiatric illnesses, including
schizophrenia4 and major depressive disorder5. The development
of dense spatial transcriptional atlases now enables the study of
cellular and molecular associates of functional brain networks.
Early work in this area identifies genes encoding ion channels6

and those enriched in supragranular layers of cortex7 as correlates
of large-scale network organization. Other research indicates that
cortical resting-state signal fluctuations follow the expression of
neuron-enriched genes8. However, the transcriptional correlates
of brain function have rarely been validated in-vivo6 and little is
known about how the spatial distribution of specific interneuron
subtypes shapes cortical function and associated risk for psy-
chiatric illness in humans.

The spatial distribution of interneuron subtypes is theorized to
contribute to regional specialization of cortex, partly by altering
the relative balance of excitation and inhibition for a given cor-
tical area9–11. Interneurons comprise 20–30% of cortical neu-
rons12 and form stereotyped connections with excitatory
projection neurons2,3. The majority of interneurons express one
of a limited set of genetic markers: somatostatin (SST), parval-
bumin (PVALB), and vasoactive-intestinal peptide (VIP; a subset
of HTR3A interneurons)2. Each subtype possesses unique
synaptic and functional characteristics, leading to the hypothesis
that the ratio of interneuron classes underpins local differences in
neural activity11,13. For example, SST interneurons preferentially
target dendrites of cortical projection neurons to regulate their
input, whereas PVALB interneurons synapse on perisomatic
regions to regulate output2. Consequently, increased relative
density of SST interneurons may facilitate filtering of noisy or
task-irrelevant cortical signals and promote recurrent excitation
required for higher-order cognition11,14. Conversely, relative
increases in PVALB may produce stronger feedback inhibition on
excitatory neurons, leading to shorter activation timescales suited
for processing constantly changing sensorimotor stimuli11,15.
Previous work documents cortical gradients of gene transcription
that mirror the hierarchical organization of timescales from fast
(unimodal cortex) to slow (multimodal cortex)8,10,16,17. Further,
SST and PVALB interneuron markers are differentially expressed
within distributed limbic and somato-motor cortico-striatal net-
works, respectively9. These observations suggest that spatial dis-
tributions of interneuron subtypes could underlie regional
signaling differences across the cortical sheet, as indexed by blood
oxygenation level-dependent (BOLD) functional magnetic reso-
nance imaging (fMRI). However, the psychiatric and functional
consequences of spatially variable SST- and PVALB-related
transcription in cortex have yet to be fully characterized.

Establishing the principles by which cellular diversity influ-
ences brain function is a long-standing challenge in neuroscience
and could reveal biological mechanisms of individual variability
of the human brain. Consistent with this aim, cross-species evi-
dence indicates the importance of PVALB interneurons for fMRI
measures of brain function18. PVALB interneurons orchestrate
gamma-band oscillations (30–80 Hz19), a frequency range that is
tightly coupled to spontaneous BOLD fluctuations20. Experi-
mental optogenetic stimulation of PVALB interneurons in
rodents drives gamma-band rhythms, impacting information
processing through the synchronization of excitatory neurons19.
In psychiatric illness, decreased PVALB-mediated inhibition may

be a core locus of disruption in schizophrenia, leading to altered
gamma-band signals and working memory deficits that are a
hallmark of the disorder21. However, a direct link between
PVALB-related genetic variation and human brain activity has yet
to be established. Linking cortical interneurons to individual
differences in human brain function would yield deep biological
insight into the hemodynamic BOLD signal, providing an engine
for the discovery of functional connectome-linked genes and
associated risk for illness onset.

Here, we bridge genetic, transcriptional, and neuroimaging
data to advance three lines of inquiry linking interneurons to
human brain function. First, we describe the organization of SST
and PVALB expression in human and non-human primates,
demonstrating a robust pattern of anti-correlation across cortex
and subcortex. We perform single-cell polygenic deconvolution22

of bulk cortical tissue data to infer spatial distributions of inhi-
bitory, excitatory, and non-neuronal cells across cortex, providing
converging evidence with single-marker analyses. Second, we
establish that the relative density of SST and PVALB tracks
regional differences in cortical brain activity. In a large sample (N
= 9713)23, genetic variation among PVALB-correlated genes
explained an enriched proportion of heritable variance in resting-
state signal amplitude (RSFA), in a manner that mirrors the
spatial expression of PVALB measured in independent post-
mortem brain tissue. These discoveries suggest that the
molecular-genetic basis of cortical function is spatially nonuni-
form and that genes linked to PVALB interneurons explain
heritable aspects of the BOLD signal. Third, we link PVALB
interneurons and psychotic illness, demonstrating that genetic
risk for schizophrenia is enriched among interneuron-linked
genes and predicts reduced resting-state signal amplitude in a
spatially heterogeneous manner that follows PVALB expression.
These data help address a deep-rooted challenge in neuroscience
to understand how cytoarchitecture shapes human brain function
and related vulnerability for psychiatric illness.

Results
Anti-correlation of SST and PVALB interneuron markers
across cortex. The properties of interneuron subtypes emerge
early in development and are partly determined by their spatial
origin in the embryonic ganglionic eminence24. SST and PVALB
interneurons originate in the medial ganglionic eminence (MGE)
along negatively correlated spatial gradients25. That is, PVALB-
and SST-destined neurons differentially cluster within the dorsal
and ventral MGE, respectively26. Evidence in humans9,10 and
rodents11,17 suggests that SST and PVALB transcripts maintain a
negative spatial correlation in adulthood, indicating that
embryonic organization may constitute a “proto-map” of mature
cortex. Although prior research suggests that SST and PVALB
markers are differentially expressed across cortex9,10, the current
work directly establishes transcriptional anti-correlation between
these two cell types across multiple techniques, human datasets,
non-human primate data, and human neurodevelopment. This
comprehensive profiling of SST and PVALB interneuron
expression is necessary for deep profiling of their relationship to
in-vivo brain function and subsequent schizophrenia risk through
statistical genetic approaches. The functional consequences of a
negative spatial SST to PVALB relationship are not well under-
stood, but the presence of replicable and evolutionarily conserved
expression patterns may indicate the importance of interneuron
gradients.

To characterize interneuron marker topography across human
and non-human primate cortex, we analyzed gene expression
data from the Allen Human Brain Atlas (AHBA)27 and NIH
Blueprint Non-Human Primate (NHP) Atlas28. AHBA cortical
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samples from the left (n= 1265) and right (n= 418) hemispheres
were analyzed. Microarrays do not provide absolute estimates of
gene transcription, but can measure within-probe differences
across samples. SST and PVALB expression were thus z-
transformed across cortical samples, and subtracted (i.e., SST–
PVALB) to reveal relative expression differences (Fig. 1a).
Extending prior evidence9,10, SST and PVALB were anti-
correlated across AHBA cortical samples (Fig. 1e) for both
parametric (r(1681)=−0.45, p < 2.2e−16) and non-parametric
tests (Spearman’s rho (rs)=−0.40, p < 2.2e−16). Relative to all
possible gene-wise correlations, the SST to PVALB correlation
was among the most negative (Fig. 1h, i; AUCsst= 0.009,
AUCpvalb= 0.033). Further, the SST and PVALB relationship
was among the most negative relative to all possible (n=
152,207,628) two-gene pairings (Fig. 1j; AUC= 0.001). SST and
PVALB distributions were organized along an anterior to
posterior gradient, with greatest relative SST in orbitofrontal
and medial prefrontal cortex, anterior insula, and the temporal
lobe (Fig. 1a, c and Supplementary Fig. 1). By contrast, relative
PVALB expression was greatest within unimodal somato-motor,
parietal, and visual cortices (Fig. 1a, c and Supplementary Fig. 1).
Histologically defined anatomical categories were used to
characterize regional differences of interneuron marker expres-
sion, reflected in Fig. 1c showing negatively correlated SST and
PVALB median across cortical subregions (r(39)=−0.88, p=
2.4e−14).

The negative spatial relationship between SST and PVALB was
evolutionarily conserved in non-human macaque primates
(Fig. 1f; r(34)=−0.74, p= 2.2e−7; rs=−0.60, p= 0.0001),
suggesting that interneuron marker gradients may reflect a core
organizational feature of primate cortex. These data complement
evidence for similar negatively correlated SST and PVALB
gradients in rodents11,17. Given that SST and PVALB interneur-
ons originate along stereotyped, anti-correlated gradients in the
MGE26, we analyzed RNAseq data from the Brainspan Atlas of
the Developing Human Brain to test whether the emergence of
SST to PVALB negative correlations coincides with major waves
of interneuron colonization, approximately 10–25 post-
conception weeks (pcw)29,30. The negative correlation between
SST and PVALB was absent in early-fetal (8–12 pcw; β= 0.32, p
= 0.039) and early-midfetal (13–21 pcw; β= 0.02, p= 0.85)
stages. Consistent with the hypothesis that mature interneuron
distributions result from developmentally programmed migration
patterns, we observed significant negative correlations between
SST and PVALB emerge during late-fetal (24–37 pcw; β=−0.47,
p= 0.012), early-infancy (4 months; β=−0.60, p= 0.0033), mid-
late childhood (8–11 years; β=−0.52, p= 0.0038), and adult
(18–40 years; β=−0.35, p= 0.0014) periods, as well as at a
trend-level in adolescence (13–15 years; β=−0.54, p= 0.057).
We did not observe a relationship in late infancy (10 months; b=
−0.37, p= 0.36) or early childhood (1–4 years; b=−0.11, p=
0.48). These data provide developmental context as well as an
external replication of the SST–PVALB cortical expression pattern
observed in the AHBA (adult human) and NHP Atlas (adult
macaque) samples.

Polygenic deconvolution of cell types across cortex. SST and
PVALB are reliable genetic markers of their respective inter-
neuron subtypes2, however single-cell transcriptomics show that
cell classes possess polygenic signatures of expression31. To cap-
ture the molecular complexity of cell identity and quantify cell-
level associates of brain function, we conducted polygenic cellular
deconvolution of bulk AHBA expression data using CIBER-
SORTx (https://cibersortx.stanford.edu/)22. This method levera-
ges transcriptomic “signatures” of cellular identity to estimate the

relative abundance of cell types in bulk tissue data. Single-nucleus
droplet-based sequencing (snDrop-seq) data from Lake and col-
leagues31 was used, providing cell-level expression data in dorsal
frontal cortex (BA6/BA10; 10,319 cells) and visual cortex (BA17;
19,368 cells). Collinearity among transcriptionally similar cell
types was reduced by using 18 superordinate cell identities
defined by Lake and colleagues31. Cell signatures were created
with CIBERSORTx (Supplementary Fig. 5) and cell abundance,
expressed as a fraction, was estimated for each cortical tissue
sample from AHBA donors (see Supplementary Data). AHBA
tissue samples were projected to the cortical surface, allowing for
vertex-level localization on a group-atlas (fsLR32k; see “Meth-
ods”). Fractional cell abundances were averaged for each of the
400 bi-hemispheric parcels from the atlas of Schaefer and col-
leagues32 (Supplementary Figs. 6–8).

We focus on imputed spatial distributions of SST and
PVALB interneurons across cortex, estimated separately from
visual and frontal cortex single-cell data (Fig. 2). Similar to
single-marker analyses (Fig. 1a and Supplementary Fig. 1a), the
inferred fractional abundance of SST interneurons was greatest
in medial PFC, anterior insula, and temporal poles (Fig. 2a),
which was highly consistent between frontal and visual cortex
cell type derived maps (r(337)= 0.73, p < 2.2e−16). Conversely,
PVALB fractional abundance was highest within visual, motor,
and dorsal parietal cortex (Fig. 2b), which was also consistent
across frontal and visual cortex derived estimates (r(337)=
0.76, p < 2.2e−16). Given the hypothesized importance of
relative SST and PVALB abundance for cortical functional
dynamics, Fig. 2c shows the spatial distribution of estimated
SST- (red) and PVALB-dense (blue) areas of cortex. Figure 2d
illustrates the spatial correlation of all deconvolved cell type
fractions across cortex, recapitulating the negative spatial
relationship between SST and PVALB single-gene markers
(frontal cortex: r(337)=−0.62, p < 2.2e−16; visual cortex: r
(337)=−0.37, p= 1.15e−12). Critically, cell fraction maps of
PVALB and SST obtained through polygenic deconvolution
were strongly correlated with the expression of their respective
single-marker genes (Fig. 2f, g).

SST and PVALB anti-correlation in subcortical territories. We
next examined whether the negative spatial relationship between
SST and PVALB is also preserved across subcortex (see Supple-
mentary Information for subcortical sample information). Although
there is evidence for anti-correlated SST and PVALB interneuron
gradients in striatum9 and hippocampus33, it remains unclear
whether SST and PVALB inverse gradients are ubiquitous
throughout the brain. Sample-wise expression was normalized and
correlated separately for each of the seven areas: striatum, dorsal
thalamus, hypothalamus, globus pallidus, amygdala, hippocampus,
and combined substantia nigra/ventral tegmentum. The strength of
the SST to PVALB correlation was benchmarked against all gene-
wise correlations to SST and PVALB (Fig. 3a), and quantified as
AUC of the distribution less than or equal to the SST–PVALB
correlation. SST was significantly negatively correlated to PVALB in
the hypothalamus (r(100)=−0.72, q= 1.9e−16, AUCsst= 0.002,
AUCpvalb= 0.01), globus pallidus (r(37)=−0.39, q= 0.011, AUCsst

= 0.03, AUCpvalb= 0.03), amygdala (r(65)=−0.30, q= 0.019,
AUCsst= 0.06, AUCpvalb= 0.03), and thalamus (r(173)=−0.19, q
= 0.019, AUCsst= 0.04, AUCpvalb= 0.07), but not the hippocampus
(r(156)=−0.12, q= 0.14, AUCsst= 0.06, AUCpvalb= 0.21), ventral
tegmentum/substantia nigra (r(63)= 0.09, q= 0.50, AUCsst= 0.39,
AUCpvalb= 0.32), and striatum (r(168)= 0.23, q= 0.011, AUCsst=
0.65, AUCpvalb= 0.72).

These data identified subcortical territories with biased SST or
PVALB expression in humans, which show striking
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correspondence to non-human animal literature11. Median z-
transformed SST and PVALB was calculated for subdivisions of
each subcortical region (Supplementary Fig. 9). Across 40 AHBA
subcortical sub-regions, 31 were able to be mapped onto rodent
homologs present in cell density (cells per mm3) data from Kim
and colleagues11. The relative presence of human SST and PVALB

across sub-regions was significantly positively correlated to
ground truth cell density estimates in rodents (Fig. 3b; rs=
0.41, p= 0.025). Results were consistent when Spearman-rank
correlation was used to limit the influence of outliers, and when
the ratio of SST/PVALB rodent cell densities was used rather than
the difference (rs= 0.49, p= 0.006).
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In particular, the central nucleus (CeA) of the amygdala was
enriched for SST in both rodents (SSTdensity= 24,342.60,
PVALBdensity= 119.42) and humans (SSTexpr(z)= 1.27, PVAL-
Bexpr(z)=−0.76), paralleling observations in primates34. We also
found greater relative SST in the ventral tegmental area (VTA) for
both rodents (SSTdensity= 1953.98, PVALBdensity= 426.10) and
humans (SSTexpr(z)= 1.12, PVALBexpr(z)=−0.42), but greater
relative presence of PVALB in the substantia nigra pars reticulata
(SNr) in humans (SSTexpr(z)= 0.22, PVALBexpr(z)= 0.72) and
rodents (SSTdensity= 680.27, PVALBdensity= 4373.48). Support-
ing this VTA/SNr distinction, the VTA is connected to other SST-
biased regions, including the nucleus accumbens (NAcc), anterior
cingulate cortex, and mediodorsal thalamus35, whereas functional
neuroimaging indicates a preferential coupling of the SNr to
motor areas and sensorimotor striatum36. Building on the
previous work9, the extent to which SST may be relatively
increased within a distributed limbic cortico-striato-thalamic
network is explored in Supplementary Fig. 10.

Relative SST and PVALB covaries with resting-state signal
amplitude. Computational rodent work suggests the relative
presence of SST and PVALB interneurons is a determinant of

functional differences and hierarchical organization across
cortex11. Spiking activity in cortex progresses from shorter
timescales in sensory and unimodal cortices to longer time-
scales in association and integrative cortices15,37. This func-
tional organization may be indexed by variability in the
resting-state BOLD signal. Accordingly, we examined whether
the difference of cortical SST and PVALB expression covaries
with an in-vivo measurement of cortical signal variability,
resting-state functional amplitude (RSFA). Voxel-wise RSFA
was calculated using the UK Biobank sample (n= 9713) and
averaged across the 400 parcel functional atlas of Schaefer and
colleagues (Fig. 4a)32. Between-subject hierarchical clustering
was conducted to reduce data dimensionality and identify
cortical territories with similar patterns of signal amplitude
across individuals (Fig. 4b). A seven-cluster solution was
selected, corresponding to limbic A (light beige), limbic B
(dark beige), cingulo-opercular (teal), temporo-parietal
(orange), prefrontal (red), somato/motor (blue), and visual
(purple) clusters. With the exception of Figs. 5a, b and 6b,
clusters serve to aid in visualization and do not influence sta-
tistics. Consistent with recent work38, this data-driven
dimensionality reduction broadly sorted association and
unimodal aspects of cortex.

Fig. 2 Deconvolved cell type distributions are consistent with SST and PVALB single marker expression maps. Using CibersortX22, frontal and visual
cortex snDrop-Seq data from Lake and colleagues31 were used to deconvolve cell type fractions from bulk AHBA microarray expression data. Deconvolved
cell fractions of a somatostatin and b parvalbumin interneurons across cortex using single-cell data from frontal (left) and visual (right) cortex.
c Somatostatin and parvalbumin cell fraction maps were z-transformed and subtracted (SST–PVALB) to illustrate the relative density of each subtype
across cortex. d Spatial correlations of each deconvolved cell type across cortex using frontal (top-left triangle) and visual (bottom-right triangle) cell
signatures. e Example marker genes for each cell class. f Deconvolved parvalbumin fractions across cortex were positively spatially correlated (Pearson’s)
to single-gene PVALB expression (frontal cortex: r(337)= 0.81, p < 2.2e−16; visual cortex: r(337)= 0.48, p < 2.2e−16). g Deconvolved somatostatin
fractions across cortex are positively spatially correlated (Pearson’s) to single-gene SST expression (frontal cortex: r(337)= 0.72, p < 2.2e−16; visual
cortex: r(337)= 0.60, p < 2.2e−16).
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Computational models suggest that increased PVALB density
may correspond to greater recurrent inhibition of excitatory
neurons and faster timescales (i.e., higher RSFA). Likewise,
increased relative presence of SST is predicted to correspond to
longer timescales of activity (i.e., lower RSFA)11. Earlier work
documents a correlation of interneuron marker expression with
fractional Amplitude of Low-Frequency Fluctuations (fALFF)8,
a metric closely tied to RSFA, within a circumscribed set of
cortical areas. Consistent with these predictions, a negative
spatial correlation was observed between RSFA and the relative
difference of SST and PVALB expression (Fig. 4c; r(337)=
−0.53, p < 2.2e−16; rs=−0.60, p < 2.2e−16). Across
152,207,628 two-gene pairings, the SST–PVALB to RSFA
correlation (r=−0.53; Fig. 4c) was the 54,303rd most

negatively associated pair (top 0.04%). Analysis of deconvolved
cell fractions across cortex revealed that SST had the strongest
negative spatial association to RSFA (Fig. 4d; frontal cortex
signature: r(337)=−0.48, p < 2.2e−16; visual cortex signature:
r(337)=−0.36, p= 1.2e-11), while PVALB cell fractions were
the most positively correlated (frontal cortex signature: r(337)
= 0.47, p < 2.2e−16; visual cortex signature: r(337)= 0.34, p=
1.7e−10), relative to all other cell types. Relative difference of
SST and PVALB cell fractions was the most associated with
RSFA, relative to all pairwise cell combinations from frontal (n
= 272) and visual (n= 240) cortex (Fig. 4e). Overall, these
analyses use ex-vivo transcriptional data to identify SST and
PVALB interneurons as cellular correlates of in-vivo measures
of cortical signal variability (i.e., RSFA).
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−16; visual cortex signature: r(337)=−0.36, p= 1.2e−11) and most positively correlated to PVALB cell fraction (frontal cortex signature: r(337)= 0.47, p
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Polygenic variation among PVALB-correlated genes underlies
cortical brain function. Genome-wide association studies
(GWAS) demonstrate that the genetic bases of many complex
traits are due to the cumulative weight of genetic variants spread
across the entire genome, each with a subtle effect39. Brain phe-
notypes such as resting-state functional amplitude likely possess a
similar polygenic architecture. However, functionally-relevant
polymorphisms can cluster in genes expressed within associated
tissue and cell types40. We tested whether single-nucleotide
polymorphisms (SNPs) that explain heritable variance in brain
activity (i.e., RSFA) are enriched within genes linked to PVALB

and SST, which would provide insight into the molecular basis of
the resting-state BOLD fluctuations.

We established the SNP heritability of RSFA. A significant
proportion of between-subject variation in cluster-wise RSFA was
due to common genetic variants [Fig. 5a; h2snp: limbic A= 0.25
(SE 0.04), limbic B= 0.30 (SE 0.04), cingulo-opercular= 0.21 (SE
0.04), temporo-parietal= 0.29 (SE 0.04), prefrontal= 0.33 (SE
0.04), somato/motor= 0.21 (SE 0.04), visual= 0.07 (SE 0.04)]41.
See Supplementary Fig. 11 for parcel-wise heritability estimates.
Interneuron-correlated gene sets were nominated using a “guilt-
by-association” logic. That is, genes that were spatially correlated
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Fig. 5 PVALB-linked genetic variation explains patterns of heritable brain function. a RSFA was significantly heritable across the seven empirically
defined spatial clusters (n= 9713 UKB subjects). b Partitioned heritability analyses reveal that the 500-gene PVALBSNP set accounted for a significant
proportion of heritable variance in all seven clusters (n= 9713 UKB subjects). c Parcel-wise PVALBSNP partitioned heritability of RSFA (left panel) tracks the
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standard error.
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to interneuron markers (i.e., SST, PVALB) were assumed to relate
to each interneuron subtype. Using cortical AHBA data, genes
were rank-ordered by their spatial correlation to each interneuron
marker and the top 500 most-correlated genes were selected.
Interneuron-related SNP lists were generated for each gene set by
identifying variants within ±5000 base pairs from transcription
start and stop site of each gene. PVALB and SST SNP sets were
non-overlapping. The eQTL variants for each gene set were

included, defined using cortical data from the CommonMind
consortium42 and NIH GTEx43. We denote the SNP lists for each
interneuron gene set as PVALBSNP and SSTSNP (see Supplemen-
tary Data). Genetic relatedness matrices were calculated for the
UKB sample using each SNP set, and heritability was estimated
using GCTA-GREML simultaneously across three partitions:
PVALBSNP, SSTSNP, and a partition containing all remaining
genotyped variants41.
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Indicating that genetic variance in RSFA, a measure of in-vivo
functional variability, is explained by genes linked to PVALB
interneurons, the PVALBSNP set accounted for a significant
proportion of heritable variance of the temporo-parietal
[h2PVALB ¼ 0:036 (SE 0.010), q= 0.0007], prefrontal
[h2PVALB ¼ 0:022 (SE 0.0091), q= 0.015], and somato/motor
[h2PVALB ¼ 0:021 (SE 0.0090), q= 0.015], visual [h2PVALB ¼ 0:020
(SE 0.0089), q= 0.021], limbic A [h2PVALB ¼ 0:016 (SE 0.009), q
= 0.04], limbic B [h2PVALB ¼ 0:026 (SE 0.009), q= 0.007] RSFA
clusters, but at only trend-level in cingulo-opercular cluster
[h2PVALB ¼ 0:014 (SE= 0.0090), q= 0.053]. Conversely, the
SSTSNP set did not explain a significant proportion of heritable
variance across any partition (h2SST’s < 0.011, q’s > 0.44). We next
tested whether the PVALBSNP set explains more genetic variance
in RSFA than would be expected by chance. Enrichment was
calculated as the proportion of heritability explained by the SNP
partition, divided by the fraction of SNPs in that partition (>1
denotes enrichment). We observed enrichment greater than 1 for
visual (enrich= 8.10, SE= 0.31), somato/motor (enrich= 3.56,
SE= 0.32), temporo-parietal (enrich= 4.10, SE= 0.34), prefron-
tal (enrich= 2.36, SE= 0.32), cingulo-opercular (enrich= 2.04,
SE= 0.31), limbic A (enrich= 1.98, SE= 0.32), and limbic B
(enrich= 3.41, SE= 0.33) clusters. The PVALBSNP list (N= 9571
variants) constituted 2.8% of total analyzable genotyped SNPs (N
= 337,501 variants), but accounted for 5.6–22.9% (M= 10.4, SD
= 6.0) of total genetic variance across each of the RSFA clusters
(Fig. 5a). The SSTSNP partition (2.5% of available variants) only
explained an enriched proportion of variance within the cingulo-
opercular (enrich= 1.86, SE= 0.33) RSFA cluster.

An important unanswered question is whether the genetic
determinants of RSFA are uniform across cortex, or whether they
vary according to underlying transcriptional patterns. We tested
whether the PVALBSNP and SSTSNP partitions explain a greater
percentage of heritable RSFA variance in regions where the
respective marker is most expressed. Partitioned heritability was
calculated across 400 Schaefer cortical parcels. Across all parcels
with AHBA expression data, normalized genetic variance
explained by the PVALBSNP partition was positively correlated
to PVALB expression (Fig. 5c; r(326)= 0.35, p= 1.04e−10; rs=
0.40, p= 2.2e−14), corresponding to visual, superior temporal,
and parietal cortex. Across all genes, PVALB was the 115th most
positively correlated gene (top 0.66% of 17,448 transcripts;
Spearman= 29th/17,448= 0.17%) to the PVALBSNP partition
map, indicating that this positive relationship is not obligated by
global statistical properties (Fig. 5d). This relationship remained
significant after controlling for the overall SNP heritability of each
parcel (β= 0.22, t(336)=−4.70, p= 3.9e−6). Conversely,
PVALBSNP heritability was negatively correlated to SST expres-
sion (r(326)=−0.39, p= 6.32e−14; rs=−0.37, p= 6.5e−12).
There was not a significant parcel-wise relationship between
SSTSNP partitioned heritability and SST gene expression (Fig. 5f; r
(326)=−0.017, p= 0.75; rs=−0.021, p= 0.71). Converging
with single-gene analyses, deconvolved estimates of PVALB cell
fractions were the most positively correlated to PVALB

partitioned heritability (Fig. 5e; frontal cortex: r(329)= 0.35,
p= 2.27e−11; rs= 0.39, p= 2.2e−13; visual cortex: r(329)= 0.31,
p= 6.67e−9; rs= 0.34, p= 1.5e−10). These results were highly
consistent across parallel techniques using linkage-disequilibrium
score regression (LDSC) and estimates of heritability from GWAS
analyses of RSFA (Supplementary Fig. 12)44. Cumulatively, these
data indicate that the heritable basis of resting-state functional
amplitude is spatially heterogeneous, demonstrating a particularly
important role of genes co-expressed with PVALB.

Functional associates of schizophrenia genetic risk correlate
with PVALB expression. Convergent evidence from animal
models and post-mortem tissue analyses suggests that inter-
neuron dysfunction is a core pathophysiological feature of schi-
zophrenia21. To determine whether interneuron-related genetic
variation is tied to disease liability, we tested whether polygenic
risk for schizophrenia45 is greater among PVALBSNP and SSTSNP

variants, relative to the rest of the genome. Using a partitioned
MAGMA analysis46, we divided rank-ordered PVALB and SST
gene lists into bins of 500. We observed significant enrichment of
schizophrenia polygenic risk for the top PVALB gene set (β=
0.094, p= 0.022), but not the top SST set (β=−0.001, p= 0.51).
Suggesting that polygenic schizophrenia risk is greater among
interneuron-related genes, we examined 20 gene bins and found
that the enrichment of schizophrenia genetic risk decreased as
gene sets became less spatially correlated with PVALB (rs=
−0.48, p= 0.03), but not SST (rs= 0.027, p= 0.91; Fig. 6a).

To test whether polygenic risk for schizophrenia relates to
cortical RSFA, we calculated schizophrenia polygenic risk scores
(SCZ-PRS)47 using genotyped variants from individuals in the
UK Biobank imaging sample. Across the seven RSFA clusters,
SCZ-PRS negatively predicted RSFA in the visual cluster
(Benjamini–Hochberg corrected q= 0.04; Fig. 6b; GWAS thresh-
old p < 1.0), as well at trend-levels in somato/motor (q= 0.08)
and prefrontal (q= 0.10) clusters. Consistent with the hypothe-
sized link between PVALB interneurons and psychotic illness, the
relationship between RSFA and polygenic schizophrenia risk was
negatively correlated to PVALB expression across cortex (Fig. 6c;
r(337)=−0.33, p= 3.1e−10; rs=−0.35, p= 5.5e−11). That is,
regions with greater PVALB expression (e.g., motor and visual
parcels) showed stronger negative relationships between SCZ-
PRS and RSFA. This relationship remained significant after
controlling for overall SNP heritability of each parcel (β=−0.28,
t(336)=−5.32, p= 1.95e−7), indicating that the effect isn’t
driven by parcel-wise explainable genetic variance. Comparing
the RSFA-schizophrenia polygenic risk map to all genes, PVALB
was the among the top 0.83% negatively correlated expression
profiles (145 out of 17,448; Spearman= 105/17,448= 0.60%),
showing that this relationship is not statistically obligated. Across
all deconvolved cell types, parcel-wise PVALB cell fractions were
on average the most negatively spatially correlated to schizo-
phrenia risk RSFA effects (Fig. 6d; frontal cortex: r(337)=−0.36,
p= 9.5e−12; rs=−0.35, p= 2.4e−11; visual cortex: r(337)=
−0.26, p= 9.0e−7; rs=−0.26, p= 1.3e−6). Ontological

Fig. 6 Schizophrenia polygenic risk predicts brain function and tracks PVALB expression. a Genes were rank-ordered by cortical spatial correlation to
SST and PVALB, then divided into 500-gene bins. MAGMA competitive gene set analysis revealed enrichment of polygenic risk for schizophrenia in the top
PVALB (p= 0.022), but not the top SST (p= 0.51) set. Enrichment decreased across ordered bins for PVALB (Spearman’s rs=−0.48, p= 0.03) but not for
SST (Spearman’s rs=−0.001, p= 0.51). b Schizophrenia polygenic risk negatively predicts RSFA within the visual (q1.0= 0.04) cluster, as well as somato/
motor (q1.0= 0.08) and prefrontal (q1.0= 0.10) clusters at trend-levels (corrected for multiple-comparisons). c Parcel-wise prediction of RSFA by the
schizophrenia PRS negatively correlated with cortical expression of PVALB (Pearson’s r=−0.33, p= 3.1e−10), which was also significant relative to all
genes (PVALB= 145/17,448, AUC= 0.008). d Across all deconvolved cell type distributions, PVALB was the most negatively correlated to cortical SCZ-
RSFA effects (frontal cortex: Pearson’s r(337)=−0.36, p= 9.5e−12; visual cortex: Pearson’s r(337)=−0.26, p= 9.0e−7). SCZ= schizophrenia; PRS=
polygenic risk score; RSFA= resting state functional amplitude. *q≤ 0.05. Error bars= standard error.
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enrichment analysis further revealed that the top 500 genes
correlated with PVALB in the AHBA data contained genes
associated to schizophrenia, neuronal signaling, and gated
channel activity (Table 1). Together, these data suggest that
schizophrenia-related genetic variants are associated with cell
types, particularly parvalbumin interneurons, and could explain
functional disruptions across cortex.

Discussion
Integrating genetic, transcriptional, and neuroimaging data, we
demonstrate that spatial distributions of interneurons are ste-
reotyped across species and development, and explain a sub-
stantial portion of the heritable variation in RSFA, a measure of
in-vivo brain activity. Somatostatin and parvalbumin interneuron
markers were negatively spatially correlated across cortex, a
relationship that was robust in early developmental periods in
humans and evolutionarily conserved in non-human primates
(Fig. 1). Stereotyped patterns of SST and PVALB expression were
observed in subcortex and were consistent with cell density
estimates in rodents (Fig. 3). Computational models theorize that
interneuron ratios underlie regional differences in cortical brain
function11. Providing empirical support for this hypothesis,
relative SST and PVALB expression in post-mortem brain tissue
aligned with spatial RSFA in the general population (Fig. 4).
Indicating the functional relevance of this spatial relationship,
genetic polymorphisms linked to PVALB correlated genes
accounted for an enriched proportion of heritable variance
underlying cortical signal amplitude (Fig. 5). Critically, the
amount of in-vivo variance explained by PVALB-linked SNPs
positively tracked spatial expression of PVALB in independent
post-mortem brain tissue, suggesting that common genetic
polymorphisms influence brain function in a cell-preferential and
regionally variable manner. Implicating genetic differences
among interneurons in schizophrenia, schizophrenia-related
polygenic risk was enriched among genes co-expressed with
interneurons, and predicted reduced resting-state functional
amplitude across cortex, following the spatial landscape of
PVALB gene expression (Fig. 6).

Adaptive functioning depends on the integration of informa-
tion across timescales. Higher-order cognition often requires
information accumulation over time, whereas sensorimotor pro-
cessing entails rapid adaption to changing external stimuli15,18.
These computational demands are met, in part, through the
hierarchical organization of anatomic and functional connections
in cortex, as well as cytoarchitectural differences across brain
regions10,48. Our data indicate that interneuron ratios, as indexed
by SST and PVALB expression, are an important feature of
regionally variable brain function. Due to unique functional and

synaptic properties of somatostatin and parvalbumin inter-
neurons, relative shifts in their density can alter the balance of
inhibitory control11. SST interneurons generally synapse onto
dendrites of pyramidal neurons to gate incoming cortical signals,
whereas PVALB interneurons generally provide perisomatic
inhibition that is well-suited for feedback inhibition and output
regulation2. Increased dendritic (i.e., SST) over perisomatic (i.e.,
PVALB) inhibition could lead to more robust filtering of task-
irrelevant information, allowing for greater recurrent excitation
and integration of information over time19. Conversely,
parvalbumin-dense sensorimotor regions may benefit from fast
responses and lower recurrent excitation to adapt to rapidly
changing inputs15.

Our analyses provide molecular genetic support for a rela-
tionship between parvalbumin interneurons and the hemody-
namic signal. BOLD signals are preferentially coupled to gamma-
band oscillations (30–80 Hz) relative to other frequency
domains20. Importantly, fast-spiking parvalbumin interneurons
have been experimentally linked to gamma oscillations49. Here,
we provide initial evidence in humans for the influence of par-
valbumin interneurons on fMRI signal variability. For instance,
polygenic variation among parvalbumin correlated genes
explained upwards of 23% of the heritable variance in RSFA in
visual cortex.

Schizophrenia is one of the most heritable forms of psychiatric
illnesses (h2 ~81%)50, with converging lines of evidence pointing
toward GABAergic and parvalbumin interneuron abnormalities
as cardinal features of the disorder21,51. Patients with schizo-
phrenia exhibit reduced levels of GAD67, an enzymatic precursor
of GABA52, and are characterized by PVALB interneurons with
atypical perineuronal nets53. These abnormalities are thought to
underlie disorder-related disruption of gamma-band oscillations
and working memory51. Linking these observations, we demon-
strate that polygenic schizophrenia risk is increased among genes
that are spatially correlated to PVALB (Fig. 6a), expanding upon
cell transcriptomic work implicating cortical interneurons as an
illness marker40. We further show a negative association between
individual polygenic schizophrenia risk and RSFA in a large
population-based sample (Fig. 6b). The topography of these
effects follows the spatial profile of PVALB expression across
cortex (Fig. 6c), highlighting the potential role of parvalbumin
interneurons in mediating brain-based intermediate phenotypes
associated with psychotic illness. This report also compliments
evidence that schizophrenia risk gene expression is spatially
correlated to disorder-related changes in brain morphology54,55.

Disruption of excitatory/inhibitory balance may reflect a cross-
diagnostic marker of psychiatric illness56. For instance, decreased
expression of parvalbumin cell markers is evident in both schi-
zophrenia and bipolar disorder57, while major depressive disorder

Table 1 Enrichment terms for interneuron-correlated genes.

Gene list Category ID Name p q FDR-BH Hits Genes in GO

SST GO: BP GO:0099536 Synaptic signaling 1.37e−5 3.04e−2 37 687
SST GO: BP GO:0099537 Trans-synaptic signaling 2.43e−5 3.04e−2 36 678
SST GO: CC GO:0097458 Neuron part 1.26e−6 6.83e−4 66 1545
SST GO: CC GO:0098793 Presynapse 4.03e−4 3.64e−2 20 341
PVALB GO: MF GO:0005261 Cation channel activity 3.33e−12 1.74e−9 33 306
PVALB GO: MF GO:0005249 Voltage-gated potassium channel activity 1.33e−10 1.69e−8 17 91
PVALB GO: BP GO:0071805 Potassium ion transmembrane transport 1.53e−9 2.43e−6 21 181
PVALB GO: BP GO:0098655 Cation transmembrane transport 3.23e−9 3.09e−6 48 738
PVALB GO: CC GO:0034703 Cation channel complex 1.04e−10 5.07e−8 23 176
PVALB GO: CC GO:0034702 Ion channel complex 3.03e−10 5.07e−8 29 291
PVALB Disease C0036341 Schizophrenia 5.85e−7 1.6e−3 68 1561

Ontological enrichment analyses were conducted with ToppGene on the 500 genes used to generate the PVALBSNP and SSTSNP lists. See Supplementary Data for full enrichment tables.
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is marked by preferential reductions in somatostatin inter-
neurons5. Delineating the region-specific roles of cortical inter-
neuron subtypes will provide insight into cross-diagnostic
patterns of both behavior and brain function. With regard to
depressed mood, modulation of cortical somatostatin inter-
neurons causally influences anxiety- and depression-like beha-
vioral phenotypes in rodents5,58. In line with this observation, we
observed preferential expression of somatostatin within mPFC,
NAcc, mediodorsal thalamus, and VTA (Supplementary Fig. 9), a
distributed set of regions implicated in reward and affective
information processing35. Somatostatin-biased regions (ACC,
mPFC, and insula) also correspond to areas of cortical thinning in
patients with MDD and individuals reporting elevated negative
affect59–61.

The present findings should be interpreted in light of several
limitations. First, we use single molecular markers to infer the
relative presence of SST and PVALB interneurons, which are not
sensitive to morphological and physiological differences among
interneuron subgroups2, a point we sought to address through the
analyses of deconvolved cell type distributions. Second, we
employ a “guilt-by-association” logic to nominate interneuron
related gene sets. While we cannot conclude that genes within
each identified interneuron group directly influence interneuron
function, similar correlation-based nomination approaches have
been shown to correspond well with a priori defined gene
groups62. However, the examination of enrichment terms
(Table 1 and Supplementary Information) allows for a more
precise understanding of the biological processes contributing to
these results. Third, our measure of brain signal amplitude
(RSFA) is likely explained by a mixture of neural and vascular
signals. However, effects related to BOLD variability have been
shown to be stable even after controlling for measures of vascu-
lature63, and vascular confounds are a caveat of many BOLD
measures of brain function. Last, our in-vivo imaging and genetic
analyses focus on an aging population of white British indivi-
duals. Future work should examine the stability of these results
across diverse populations64,65.

Inherited genetic variation shapes brain function within and
across individuals66. Analyses of spatially-dense, whole-genome,
expression atlases increasingly reveal transcriptional correlates of
brain function8, structure67, functional connectivity6,7,9, and
psychiatric illness54. With the parallel emergence of large-scale
imaging genetic data23, it is now possible to bridge structural
genetic, transcriptional, and large-scale neuroimaging brain
phenotypes. Here, we leverage these data to show that inter-
neuron marker distributions are consistent across species, cor-
relate with cortical signal amplitude, explain regional differences
in heritable brain function, and associate with genetic risk for
schizophrenia in the general population.

Methods
Allen Human Brain Atlas. Publicly available human gene expression data from six
postmortem donors (1 female), aged 24–57 years (42.5 ± 13.4) were obtained from
the Allen Institute27. Data reflect the microarray normalization pipeline imple-
mented in March 2013 (http://human.brain-map.org) and analyses were conducted
according to the guidelines of the Yale University Human Subjects Committee.
Microarray probes from eight overarching ontological categories were selected:
cortex, dorsal thalamus, striatum, globus pallidus, hypothalamus, hippocampus,
amygdala, and the combined substantia nigra and ventral tegmentum (see Sup-
plementary Information). Probes without Entrez IDs were removed. Probe-wise
noise for each donor was quantified as the number of above-threshold samples in
cortex, divided by total cortical sample count. A probe-wise average was computed
across all six donors, which was used to remove probes expressed in fewer than
20% of cortical samples68. If more than one probe existed for a given gene, the one
with the highest mean expression level was selected for further analysis, resulting in
17,448 brain-expressed genes.

Individual cortical tissue samples were mapped to each AHBA donor’s
Freesurfer derived cortical surfaces, downloaded from Romero-Garcia and
colleagues69. Native space midthickness surfaces were transformed to a common

fsLR32k group space while maintaining the native cortical geometry of each
individual donor. The native voxel coordinate of each tissue sample was mapped
to the closest surface vertex using tools from the HCP workbench70. A cortical
tissue sample was not analyzed if it was greater than 4 mm from the nearest
surface vertex, resulting in 1683 analyzable cortical samples. Microarray
expression of each gene was mean- and variance-normalized separately for each
of the eight analyzed regions, revealing relative expression differences within
cortical and subcortical territories. For region-wise expression analyses (e.g.,
Fig. 1c), ontological categories from the AHBA were used to calculate the
median, min–max, and interquartile range of relative expression in each region.
Detailed information about the analyzed regions is provided in the
Supplementary Information. Cortical data visualization was carried out using
wb_view from the HCP workbench70. The MNI locations of striatal and thalamic
samples were cross-referenced to functional atlases of Choi and colleagues71 and
Hwang and colleagues72. With AFNI, a single voxel (1 mm3) region of interest
(ROI) was generated at the MNI location of each sample. A functional network
label was assigned if the ROI fell within a volumetric parcel. If the sample did
not overlap with the functional atlas, the associated ROI was expanded to 2 mm3

and the network with the most overlapping voxels in the ROI was assigned. If the
expanded 2 mm3 ROI did not overlap, the process was repeated using a 3 mm3

ROI. A sample was omitted from analysis if the 3 mm3 ROI did not overlap with
the associated functional atlas. Functional sub-regions with 3 or fewer samples
were excluded from analyses. This process was repeated for coordinates aligned
to MNI152 1 mm space using ANTs registration tools (https://github.com/
chrisgorgo/alleninf/tree/master/alleninf/data).

Subcortical AHBA expression data was compared to rodent cell density counts
published by Kim et al.11. Z-transformed AHBA expression values were
summarized across major subdivisions of the seven subcortical regions analyzed
(e.g., CA1, NAcc, etc.; Supplementary Data). Median AHBA expression values were
used for analyses in Fig. 3b. Rodent homologs of each sub-region were manually
identified and PVALB and SST cell densities were averaged across male and female
samples.

UKB imaging processing. Minimally preprocessed resting-state fMRI data from
the UK Biobank were analyzed, reflecting the following preprocessing steps: motion
correction with MCFLIRT73, grand-mean intensity normalization, highpass tem-
poral filtering, fieldmap unwarping, and gradient distortion correction. Noise terms
were identified and removed using FSL ICA+FIX. Full information on the UKB
preprocessing is published23. Additional processing was conducted in AFNI74 and
consisted of 3dDespike, resampling to MNI152 space using the UKB generated
linear and nonlinear transforms, FWHM blur of 4.0 mm, regression of CSF, WM,
and global resting state signals, and first- and second-order trend removal. Voxel-
wise RSFA maps were generated with 3dRSFC and then averaged within each of
the approximately symmetrical 400 volumetric parcels from the 7-network par-
cellation of Schaefer and colleagues32. Due to signal blurring between lateral
striatum and insular cortex, supplemental resting-state functional connectivity
analyses reflect an additional local white matter regression against gray matter
using AFNI anaticor. Imaging analyses were conducted in volume, but visualized
on the cortical surface. Resting-state functional connectivity between striatum,
thalamus, and cortex was estimated using AFNI’s 3dNetCorr, which calculated the
Fisher-Z transformed correlation values of timeseries across the Choi 7-region
striatal atlas71, the Hwang 9-region thalamic atlas72, and the Schaefer 400-region
cortical atlas32.

A total of 13,236 UKB subjects were processed through the imaging pipeline.
Subjects with mean run-wise frame-to-frame head motion greater than 0.20 mm,
and inverted resting-state SNR greater than three standard deviations above the
mean were removed. After filtering for white British subjects with usable genetic
data, cryptic relatedness <0.025, and conducting row-wise deletion for the variables
age, sex, height, weight, BMI, three head position coordinates (X, Y, Z), combined
gray/white matter volume, combined ventricular/CSF volume, diastolic and systolic
blood pressure, run-wise resting state motion, resting state inverse SNR, T1 inverse
SNR, and UK Biobank assessment center, 9713 subjects remained for analyses
(percent female= 54.33, mean age= 63.67, SD= 7.45, min/max age= 45–80). We
also included the anthropometric measures of height, BMI, weight, and blood
pressure. Analyses were conducted according to the guidelines of the Yale
University IRB.

UKB genetics. UK Biobank genotype data was filtered to include only white British
subjects with imaging data passing the quality control thresholds described above.
Plink v1.9 was used to remove samples with missingness >0.10, SNPs with minor-
allele frequency <0.05, Hardy–Weinberg equilibrium p < 1 × 10−6, and call rate
<0.02, resulting in 337,501 autosomal variants75. GCTA software was used to
calculate a genetic relatedness matrix to remove individuals with cryptic relatedness
more than 0.025, leaving N= 9713 subjects for analysis41. Ten genetic principal
components were then calculated for use as covariates in polygenic risk score and
heritability analyses. When calculating polygenic risk for schizophrenia, SNPs from
the major histocompatibility complex were censored except for the most sig-
nificantly associated variant from the region.
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RSFA between-subject clustering and heritability. Voxel-wise RSFA data from
the (N= 9713) UK Biobank sample was averaged within each of 400 roughly
symmetric volumetric ROIs from the 7-Network cortical parcellation of Schaefer
and colleagues32. Parcel-wise RSFA values were residualized for the effect of age,
sex, age2, age × sex, age2 × sex, height, weight, BMI, combined gray/white matter
volume (normed for head size), combined ventricular/CSF volume (normed for
head size), diastolic and systolic blood pressure, run-wise rsfMRI motion, rsfMRI
inverse SNR, T1 inverse SNR, three head position coordinates (X, Y, Z), and UK
Biobank assessment center. Hierarchical clustering of residualized RSFA estimates
was conducted using R in order to group regions with similar between-subject
patterns of covariation. A 7-parcel RSFA clustering was selected. Raw RSFA values
were then averaged across parcels falling within the same data-derived between-
subject cluster for use in heritability analyses. SNP heritability of RSFA was esti-
mated with genotyped data using GCTA-REML software. Age, sex, age2, height,
weight, BMI, combined normed gray/white matter volume, combined normed
ventricular/CSF volume, diastolic and systolic blood pressure, run-wise rsfMRI
motion, rsfMRI inverse SNR, T1 inverse SNR, head coordinates (X, Y, Z), UK
Biobank assessment center, and 10 genetic principal components were included as
covariates.

Partitioned heritability analyses were conducted for the seven RSFA clusters
and for each of the 400 individual cortical parcels. Using AHBA expression data,
genes were rank ordered by their spatial cortical correlation to SST and PVALB.
Genes without Entrez IDs were removed. The BioMart package76 was used to
identify each gene’s transcription start and stop sites (±5000 base pairs) according
to the GRCh37-hg19 genome assembly. Otherwise, the gene was cross-referenced
to cortical eQTL databases from the NIH GTEx project43 and CommonMind
consortium42. Intragenic (±5000 base pairs) and eQTL SNPs associated with the
top 500 SST (NSNP= 8308) and PVALB (NSNP= 9571) correlated genes were used
for partitioned heritability analyses, respectively denoted SSTSNP and PVALBSNP. A
small subset of genes in each bin did not have analyzable variants using these
criteria and thus did not contribute to results. Genetic-relatedness matrices for the
SSTSNP and PVALBSNP partitions were generated, as well as one for all remaining
genotyped SNPs. RSFA heritability accounted for by each genetic relatedness
matrix was estimated simultaneously for each of the three partitions using
GCTA41. Partitioned heritability was then defined as the phenotypic variance
explained by either SSTSNP or PVALBSNP, divided by the total phenotypic variance.
To calculate the significance of individual partitions, we consider the Wald test
statistic against the null of h2part ¼ 0, which follows a half-half mixture of χ20 (a χ2

distribution with a probability mass at zero) and χ21 (a χ
2 distribution with 1 degree

of freedom). Enrichment values were calculated to determine if the proportion of
variability explained by a partition was greater than the proportion of variants
within the partition, defined as:

enrichpart ¼
ðh2part=h2totalÞ
ðgpart=gtotalÞ

ð1Þ

where h2part is the heritable variance explained by the SNP partition (e.g.,
PVALBSNP), h2total is the heritable variance explained by all partitions, gpart is the
number of variants within the SNP partition, and gtotal is the total number of
genotyped SNPs. Standard error for SNP partitions were similarly scaled by the
genome partition denominator. When calculating RSFA partitioned heritability
across individual parcels (i.e., Fig. 5), those with outlier partitioned heritability (i.e.,
PVALBPART, SSTPART) and expression (i.e., PVALB, SST) greater than 4 standard
deviations from the mean were excluded, resulting in 328 observations across
cortex. The spatial relationship between partitioned heritability estimates and ex-
vivo AHBA gene expression patterns was then quantified using correlation (Fig. 5).

GCTA heritability results were replicated using LDSC regression44.
Preprocessing of UKB imputed genetic data included censoring of SNPs with
imputation accuracy estimate less than 90% (i.e., INFO < 0.9), minor allele
frequency <0.01, Hardy–Weinberg equilibrium p < 1 × 10−6, call rate <0.1,
genotype rate <0.1, and removal of non-biallelic variants using Plink v2.0.
Genome-wide association analyses were conducted using the linear regression form
of GCTA’s fastGWA utility77. The same quantitative and categorical covariates
were used across GCTA and GWAS analyses. LDSC based estimates of RSFA
heritability were conducted on 1,158,800 HapMap3 variants that overlapped with
variants in the UKB GWAS summary statistics, using precomputed LD scores from
1000 Genomes European data (i.e., “eur_w_ld_chr”). Partitioned RSFA heritability
analyses were conducted by examining SNPs occurring near the coding regions of
the 500 genes most spatially correlated to PVALB and SST (i.e., two non-
overlapping 500-gene bins). SNP locations were mapped to genes using the
biomaRt package in R and AHBA Entrez IDs (i.e., GRCh37 build)76. SNP
annotation files encompassed genetic variants occurring ±10,000 base pairs from
the start–stop positions of each gene. A small subset of genes in each bin did not
have analyzable variants using these criteria and thus did not contribute to results.
The LDSC “make_annot.py” tool was used to create annotation files, filtering on
HapMap3 variants and using 1000 Genomes Phase 1 genetic data to estimate LD.
Partitioned heritability of the SST and PVALB SNP sets was estimated in
conjunction with a full baseline model of 53 annotations (i.e.,
“1000G_Phase1_baseline_ldscores”), using precomputed allele frequencies (i.e.,
1000G_frq) and weights (i.e., “weights_hm3_no_hla”). These analyses provide a
measure of genetic variance explained by the SST and PVALB SNP bins,

conditioned on the baseline annotation model to prevent non-specific genetic
signals from inflating stratified heritability estimates.

To assess whether schizophrenia polygenic risk was enriched among SST and
PVALB correlated gene sets, competitive gene-set analysis was conducted using
MAGMA46. Rank-ordered SST and PVALB genes were divided into twenty non-
overlapping 500-gene bins. Schizophrenia summary statistics from the GWAS of
Ripke and colleagues45 were used. Intragenic variants were defined using a ±5000
base pair window, and gene set enrichment was estimated simultaneously across all
40 gene bins, revealing whether a particular bin is more associated with polygenic
risk for schizophrenia than all other genes. Polygenic risk for schizophrenia45 was
calculated using PRSice47. Only the top-SNP from the major histocompatibility
complex was used for the generation of individual risk scores.
Benjamini–Hochberg false-discovery rate correction was conducted separately for
each GWAS p-value threshold examined (e.g., correction for seven tests at the
GWAS p < 1.0 threshold).

NIH Blueprint processing. Publicly available microarray data from six adult
macaque primates (three female) were downloaded from the Gene Expression
Omnibus website (https://www.ncbi.nlm.nih.gov/geo; accession number
GSE31613)78. Expression values were converted from log10 to log2. Data from two
macaques (one female) were excluded due to sparse sampling across cortex.
Samples from the following 10 cortical regions were included in our analyses: OFC,
ACC, medial temporal lobe, temporal area, DLPFC, A1C, S1C, M1C, V1, and V2.
The collapseRows function was used in R to select the probe with the highest mean
expression and ComBat was used to remove residual donor effects. SST and PVALB
expression were mean and variance-normalized to reveal relative expression dif-
ferences across cortex.

BrainSpan processing. Publicly available RNAseq reads per kilobase per million
(RPKM) data from the Brainspan atlas were used to characterize patterns of
interneuron-marker gene expression across development. Cortical tissue samples
were analyzed from early fetal [8–12 post-conception weeks (pcw), donors= 10,
samples= 88], early/mid fetal (13–21 pcw, donors= 10, samples= 88), late fetal
(24–37 pcw; donors= 5, samples= 27), early infancy (4 months; donors= 3,
samples= 22), late infancy (10 months; donors= 1, samples= 8), early childhood
(1–4 years; donors= 5, samples= 41), mid/late childhood (8–11 years; donors= 2,
samples= 30), adolescence (13–15 years; donors= 2, samples= 14), and adult-
hood (18–40 years; donors= 8, samples= 85) developmental stages. RNAseq
probes without Entrez IDs were excluded and duplicated probes were removed by
selecting the probe with the highest mean expression. Data was log2 transformed
and the effect of donor was removed separately for each age group using ComBat79.
Gene expression was then mean- and variance-normalized across cortical tissue
samples separately for each developmental stage. When multiple ages were present
in a development stage, age was included as a covariate in a linear regression
predicting normalized SST expression from normalized PVALB expression.

Single-cell analysis and deconvolution. Single-nucleus droplet-based sequencing
(snDrop-seq) data from Lake and colleagues31 was obtained from the Gene
Expression Omnibus website (“GSE97930” [https://www.ncbi.nlm.nih.gov/geo]).
Count matrices derived from unique molecular identifier (UMI) were analyzed,
reflecting 19,368 cells from visual cortex (BA17) and 10,319 cells from frontal
cortex (BA10 and BA6) across six postmortem adult brains. Collinearity among
transcriptionally similar cell types was reduced by labeling cells according to
18 superordinate cell identities defined by Lake and colleagues31. Single-cell data
were preprocessed using Seurat80. After checking for outlier cells and minimally
expressed genes, default global-scaling normalization was applied (i.e., “Log-
Normalize”). Entrez IDs and gene symbols were used to cross-reference single-cell
and AHBA data, and genes lacking matches or with more than one match were
removed. Non-log transformed data were then analyzed using CIBERSORTx22 to
impute cell type fractions present in the AHBA data. Independent gene signature
matrices were defined with visual cortex and frontal cortex cell data. Cell type
fractions were then estimated separately for each AHBA donor, once using a visual
cell signature and once using a frontal cortex cell signature. Cell type fractions for
each AHBA cortical sample were mapped to the cortical surface and summarized
among Schaefer32 atlas ROIs in the same manner as single-gene expression data.

Replication analyses. In this paper, we sought to replicate findings with alter-
native methodologies and independent datasets whenever possible. In Fig. 1, we
document a negative spatial relationship between SST and PVALB interneuron
markers in cortex, using microarray data from the AHBA. This effect was repli-
cated using RNASeq data from the AHBA (Supplementary Fig. 4), in an inde-
pendent sample from the Brainspan Atlas (Fig. 1g), in cortex of non-human
macaque primates (Fig. 1d, f), and with a complementary polygenic technique
implemented with single-cell data and CibersortX (Fig. 2). We also identify ste-
reotyped patterns of SST and PVALB expression in subcortical territories, which
were replicated with independent measures of cell density in rodents (Fig. 3).
Spatial associations between cortical function (i.e., RSFA) and markers of inter-
neurons were also established with two techniques. The first approach examined
highly cell-specific individual gene markers and the second approach utilized
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polygenic cellular deconvolution based on multivariate transcriptional signatures of
cell types (Fig. 4). Further, heritability and partitioned heritability analyses of
cortical RSFA were replicated with two techniques, GCTA and LD score regression
(Fig. 5 and Supplementary Fig. 12). These methods yielded highly convergent
results that were robust to genetic preprocessing choices (e.g., analysis of genotyped
versus imputed variants) and model assumptions of underlying genetic
architecture.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support these findings are either publicly available, provided with the
paper, or are under third party restrictions. Publicly available data are accessible at the
following locations: Allen Human Brain Atlas (https://human.brain-map.org/), UK
Biobank (https://www.ukbiobank.ac.uk/), Brainspan Atlas of the Developing Human
Brain (https://www.brainspan.org/), NIH Blueprint NHP Atlas (https://www.
blueprintnhpatlas.org/), NIH GTEx (https://commonfund.nih.gov/gtex), CommonMind
(https://www.nimhgenetics.org/resources/commonmind), snDrop-seq data at Gene
Expression Omnibus “GSE97942” (https://www.ncbi.nlm.nih.gov/geo/), and GWAS data
from the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/).
Data not under third-party restrictions are available at https://github.com/HolmesLab/

2020_NatComm_interneurons_cortical_function_schizophrenia.

Code availability
Code not under third-party restrictions are available at https://github.com/HolmesLab/
2020_NatComm_interneurons_cortical_function_schizophrenia.
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