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The capacity to identify the unique functional architecture 
of an individual’s brain is a crucial step toward personalized 
medicine and understanding the neural basis of variation in 
human cognition and behavior. Here we developed a cortical 
parcellation approach to accurately map functional organization 
at the individual level using resting-state functional magnetic 
resonance imaging (fMRI). A population-based functional 
atlas and a map of inter-individual variability were employed to 
guide the iterative search for functional networks in individual 
subjects. Functional networks mapped by this approach were 
highly reproducible within subjects and effectively captured 
the variability across subjects, including individual differences 
in brain lateralization. The algorithm performed well across 
different subject populations and data types, including task 
fMRI data. The approach was then validated by invasive cortical 
stimulation mapping in surgical patients, suggesting potential 
for use in clinical applications.

The human cerebral cortex is organized into areas on the basis of dis-
tinct features such as cytoarchitecture and topography1–5. These brain 
areas contribute specialized functions that interact as part of distrib-
uted networks1,6,7. Recent advances in noninvasive neuroimaging tech-
niques, especially the emergence of functional connectivity MRI8,9, 
have made it possible to explore the functional organization of regions 
and networks in the living human brain10–15. Initial work has revealed 
a number of complexities including aspects of organization that respect 
traditional notions of brain areas, as well as network organization that 
has organizational properties that span and split areas. Furthermore, 
there are individual differences in organization that are distributed 
nonuniformly across the cortex. Obtaining functional atlases at the 
level of the individual is a critical step toward understanding the asso-
ciation between anatomy and function in the human brain and the 
stability of this relationship across individuals16.

The capacity to identify the unique functional architecture of an 
individual’s brain is particularly important for personalized medi-
cine. Clinical and imaging studies, including those employing inva-
sive functional mapping techniques, have demonstrated marked 
inter-individual variability in the organization of different func-
tional systems of the brain17–19. Localizing functional architecture 
in a particular subject is therefore a fundamental requirement in 
clinical procedures such as surgical planning20 and brain stimulation  
therapies21,22. However, noninvasive functional mapping techniques 
are generally limited in accuracy and reliability at the single-subject 
level23. To date, precise functional mapping in individual patients  
still relies heavily on invasive measures.

Individual-level functional mapping is also essential for the inves-
tigation of variations in human behavior and cognition. Functional 
imaging studies of individual differences commonly use regions of 
interest (ROIs) defined by anatomy or by population-averaged fMRI 
studies24. To improve specificity, individual-level ROIs can be defined 
using a task-based functional localizer25. Recently, increased effort 
has been devoted to developing methods for parcellating functional 
networks in individual subjects on the basis of resting-state con-
nectivity14,16,26–30. An individual-level functional parcellation can 
not only be used as the ‘localizer’ for specific functions, but can also 
provide a basis for cross-subject alignment according to functional  
characteristics, instead of macroscopic anatomical landmarks, to 
improve group-level analyses.

Achieving individual-level precision is thus a major goal of 
neuroimaging. Specifically, to be clinically useful, a noninvasive 
functional mapping technology must fulfill the following criteria:  
(i) it should have high reproducibility within subjects, (ii) it should 
be sensitive to functional differences between subjects and (iii) it 
should match results derived from invasive cortical stimulation, cur-
rently considered the gold standard for individual-level functional  
mapping. On the basis of these criteria, we have developed an 

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 
Massachusetts, USA. 2Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 3Department of Psychology, 
Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA. 4Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, 
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. 5Department of Neurology, Massachusetts General Hospital, Harvard 
Medical School, Boston, Massachusetts, USA. 6Department of Psychology, Yale University, New Haven, Connecticut, USA. 7Ludwig Maximilians University Munich, 
Institute of Clinical Radiology, Munich, Germany. 8Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical 
University of Vienna, Vienna, Austria. 9Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, 
USA. 10Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China. 11Siemens Healthcare, MR Collaboration Nebraska Asia, 
Beijing, China. 12Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China. 13Psychotic Disorders Division, McLean Hospital, Belmont, 
Massachusetts, USA. 14Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts, USA. 15Department 
of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China. 16Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China. 
Correspondence should be addressed to H.L. (hesheng@nmr.mgh.harvard.edu) or B.H. (hongbo@tsinghua.edu.cn).

Received 16 September; accepted 14 October; published online 9 November 2015; doi:10.1038/nn.4164

Parcellating cortical functional networks in individuals
Danhong Wang1,2, Randy L Buckner1–3, Michael D Fox1,4,5, Daphne J Holt1,2, Avram J Holmes2,6,  
Sophia Stoecklein1,7, Georg Langs8,9, Ruiqi Pan1, Tianyi Qian1,10,11, Kuncheng Li12, Justin T Baker2,13,  
Steven M Stufflebeam1,14, Kai Wang15, Xiaomin Wang16, Bo Hong10 & Hesheng Liu1,2

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.4164
http://www.nature.com/natureneuroscience/


1854  VOLUME 18 | NUMBER 12 | DECEMBER 2015 nature neurOSCIenCe

t e C h n I C a l  r e p O r t S

approach for individual-level functional parcellation based on func-
tional connectivity, which can be applied to resting-state fMRI data 
or spontaneous activity extracted from task fMRI data. Test-retest 
reliability of the parcellation and its sensitivity to individual differ-
ences were evaluated on multiple data sets. Validity of the network 
parcellation was then examined in a group of surgical patients who 
underwent invasive cortical stimulation.

The parcellation strategy was as follows:
1. A functional cortical atlas consisting of 18 networks was first esti-

mated on the basis of data from 1,000 healthy subjects10 and projected 
onto the individual subject’s cortical surface using the FreeSurfer 
software (Online Methods). The individual subject’s blood oxygena-
tion level–dependent (BOLD) fMRI signal time courses were then  
averaged across the vertices that fell within each network. These  
atlas-based network time courses were used as the ‘reference signals’ 
for the subsequent optimization procedure.

2. The individual subject’s functional MRI signal at each vertex was 
then correlated to the 18 reference signals derived from the previous 
step. Each vertex was reassigned to one of the 18 networks according 
to its maximal correlation to the reference signals. A confidence value 
was also computed as the ratio between the largest and the second-
largest correlation values. For example, if a vertex had the strongest 
correlation with the reference signal of network A, with a correlation  
coefficient of 0.8, and the second-strongest correlation with the  
network B, with a correlation coefficient of 0.4, the confidence that 
this vertex belongs to network A was 0.8/0.4 = 2. After all vertices 
were reassigned to one of the 18 networks with a certain confidence 
level, in each network the BOLD signals of vertices with a confi-
dence value greater than a preselected threshold (for example, >1.1) 
were averaged and termed the ‘core signal’. Several parameters were 
computed for each network, including the pre-estimated inter-subject 
variability in functional connectivity31 and temporal signal-to-noise 
ratio (SNR), which were normalized and averaged across the vertices 
where the confidence values exceeded the given threshold.

3. For each network, the core signal derived from step (2) and the 
original reference signals derived from step (1) were averaged in a 
weighted manner. Before averaging, the core signal was multiplied  
by the weighting parameters computed in step (2), including inter-
subject variability, SNR and number of iterations. The resulting signal 
estimate was used as the new reference signal for the next iteration. 
This weighting strategy ensured that the original atlas-based reference 
signal was weighted less than the core signal in regions of high inter-
subject variability and regions of high SNR. The weights were gradually 
reduced as the iteration proceeded. Using these new reference signals,  
which incorporated both the individual subject’s information and 
the information of the population atlas, the brain vertices were  
further reassigned to one of the 18 networks.

4. Steps (2) and (3) were iterated until the algorithm reached a 
predefined stopping criterion; for example, the procedure was 
stopped if network membership remained the same for 98% of the  
vertices in two consecutive iterations or after a predetermined number 
of iterations.

RESULTS
Maps are reliable and capture inter-subject variability
We first applied the parcellation technique (Fig. 1) to a longitudinal  
data set (data set I) consisting of 23 subjects who were scanned five 
times within a period of six months. During the iterative search, 
the boundaries of the functional networks were gradually refined 
according to the connectivity patterns estimated in individual data 
but guided by the population-atlas (Supplementary Fig. 1 shows an 
example of the intermediate results after each iteration). In general, 
vertices in the primary visual and sensorimotor regions showed  
relatively stable network membership assignment over the itera-
tions. However, vertices in the association cortices showed greater  
adjustment during the optimization process.

Within each subject, the resulting functional atlases converged to 
be visually consistent across the five sessions, both in the primary sen-
sorimotor regions and the higher-order association regions (Fig. 2).  
Quantitative analyses indicated high intra-subject reproducibility 
across the five sessions (mean Dice coefficient = 83%). At the same 
time, functional maps varied substantially across different individuals 
(mean Dice coefficient = 67%), especially in the higher-order asso-
ciation regions. These results indicate that the iterative parcellation 
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Figure 1 Parcellating the functional networks in an individual subject’s 
brain using an iterative adjusting approach. The technique includes the 
following steps: (1) A population-based functional brain atlas is registered 
onto an individual subject’s cortical surface using FreeSurfer. The 
individual subject’s BOLD signal time courses are then averaged across 
the vertices that fall within each network. These atlas-based network time 
courses are used as the reference signals for the subsequent optimization 
procedure. (2) The individual subject’s BOLD signal at each vertex is then 
correlated to the 18 reference signals. Each vertex is reassigned to one 
of the 18 networks according to its maximal correlation to the reference 
signals. A confidence value (the ratio between the largest and the second 
largest correlation values) is computed. After each vertex is reassigned, 
the BOLD signals of the high confidence vertices (for example, >1.1) 
in each network are averaged and termed the core signal. (3) For each 
network, the core signal derived from step (2) and the original reference 
signals derived from step (1) are averaged in a weighted manner. 
Specifically, the core signal is multiplied by the weighting parameters 
derived from inter-subject variability and SNR as well as the number of 
iterations. The averaged signal is used as the new reference signal for the 
next iteration. Using these new reference signals, the brain vertices are 
further reassigned to one of the 18 networks. (4) Steps (2) and (3) are 
repeated until the algorithm reaches a predefined stopping criterion.
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technique is able to obtain reliable functional networks for the same 
person and can reflect the network distribution differences between 
individuals (Supplementary Fig. 2 shows maps of three subjects who 
demonstrated high, median and low reproducibility across sessions). 
Most notably, each individual brain had unique features.

Parcellation is widely applicable to different data types
To objectively examine the performance of the iterative parcella-
tion, quantitative analyses of the test-retest reliability and sensitivity 
to individual differences were performed in a sample independent 
from data set I that was involved in the algorithm development.  
MRI data from 100 unrelated volunteers (data set II) publicly  
available from the Human Connectome Project (HCP) were used 
for this replication purpose. This cohort was substantially different  
from data set I in terms of age, scan length, ethnicity, scanner type  
and scanning protocol. Each volunteer underwent two resting-state 
fMRI (rs-fMRI) sessions and seven task fMRI sessions (Online 
Methods). The rs-fMRI sessions were conducted on separate days; 
thus, they could be used to evaluate the test-retest reliability of the 
network parcellation.

Intra-subject reliability and inter-subject variability were meas-
ured using the Dice coefficient after each iteration (Fig. 3a). Because 
the algorithm was initialized with the population-based atlas, intra-
subject reliability was 1 and inter-subject variability was 0 at the  
beginning. As the iterative procedure progressed, inter-subject vari-
ability increased and intra-subject reliability decreased, but both  
stabilized after several iterations (Supplementary Fig. 3).

The iterative parcellation technique showed generalizability in this 
independent data set. Functional maps derived from the two rs-fMRI 
sessions were highly consistent within subjects (Fig. 3b and http://
nmr.mgh.harvard.edu/bid/download.html). In comparisons of two 
rs-fMRI sessions within the same subject, the Dice coefficient was 
82.4% ± 3.2% (mean ± s.d.). Notably, the maps also showed substantial 
inter-subject variability. Between any two individuals, the Dice coef-
ficient was 60.5% ± 2.8% (corresponding to inter-subject variability 
of 39.5%). The intra-subject consistency of network membership was 
significantly higher than the inter-subject consistency (unpaired two-
tailed t-test, t(5048) = 91.0, P < 0.001) (Fig. 3c).

An important question is whether the iterative parcellation tech-
nique can be applied to the task fMRI data that are widely available. 
Given that numerous task fMRI data sets already exist32 and task 
fMRI is routinely performed for preoperative mapping in many 
hospitals, the practical value of this iterative parcellation technique 
will be greatly enhanced if this technique can be directly applied to 
task data. To test this possibility, the task-based fMRI data of the 100 
HCP subjects were bandpass filtered (0.01–0.08 Hz) and processed 
in the same way as the resting-state data. Parcellation can be derived 
from the data of a single task but is less reliable owing to limited data 
acquisition length (Supplementary Fig. 4 and Online Methods). The 
data of different tasks were therefore concatenated within each sub-
ject to increase the amount of data per subject and to minimize the 
impact of any specific task design on the connectivity estimates33,34. 
For each individual subject, iterative parcellation was performed on 
the concatenated task fMRI data and the concatenated resting-state 
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Figure 3 Quantitative analyses of intra-subject reliability and inter-
subject variability based on the HCP subjects. (a) Intra-subject reliability 
and variability of the parcellation maps after each iteration. Shaded 
areas represent s.d. (Supplementary Fig. 3 shows spatial distributions 
of reliability and variability after each iteration.) (b) Networks of three 
exemplary subjects. (c) Parcellation based on the resting-state fMRI 
demonstrates high intra-subject reliability and high inter-subject 
variability. Between any two individuals (inter-subject), only 60.5% ± 2.8% 
(mean ± s.d.) of the brain vertices were assigned to the same networks. 
Comparing two sessions for the same subject (intra-subject), 82.4% ± 
3.2% (mean ± s.d.) of the vertices were assigned to the same networks. 
Parcellation results based on task data and resting-state data for all  
100 HCP subjects (task vs. rest) showed an overlap of 81.7% ± 4.0% 
(mean ± s.d.). **P < 0.001 (unpaired two-tailed t-test). (d) Networks 
derived from the concatenated task data for three exemplary subjects.
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data (Fig. 3d). Parcellation results based on the task fMRI data and 
the resting-state data were similar (Dice coefficient = 81.7% ± 4.0%). 
The consistency between the rest- and task-based parcellation maps 
was as high as the reproducibility between two resting-state sessions 
(paired two-tailed t-test, t(99) = 1.76, P = 0.08) (Fig. 3c). These results 
suggest the feasibility of obtaining whole-brain functional atlases of 
individual subjects from task fMRI data.

Brain lateralization is reflected in network parcellation
Hemispheric lateralization is an important organizational principle 
of the human brain and a potential marker of individual differences 
in brain development35. Here we quantified the laterality of network 
distribution in individual subjects. For each network, a laterality index 
(LI) was computed on the basis of the number of vertices in the left 
hemisphere and the number in the right hemisphere (Online Methods). 
Among the 18 networks that resulted from the iterative parcellation, 
we identified two that demonstrated strong asymmetry. The most 
left-lateralized network (LI = 0.22 ± 0.08 (positive LI values indicate  
left-lateralization)) included the inferior frontal gyrus and the temporal  

parietal junction—regions traditionally associated with language (Fig. 
4a). Among the 100 subjects, only a few demonstrated atypical right 
lateralization of this network (Fig. 4a). The most right-lateralized 
network (LI = −0.13 ± 0.09 (mean ± s.d.)) included the insula and 
the angular gyrus—traditionally associated with ventral attention36.  
Lateralization of these two networks showed moderate test-retest reli-
ability (Supplementary Fig. 5). To directly examine the relationship 
between the left-lateralized parcellation network and language func-
tion, we mapped the regions showing activation (at a Z threshold of  
Z > 1.96, corresponding to uncorrected, two-tailed P threshold of  
P < 0.05) during a story-comprehension task37. At the group level, 71.2% 
of the vertices in the left-lateralized parcellation network fell within 
the regions showing language-related activation (Fig. 4b), suggesting  
that this left-lateralized network is related to language function.

Finally, we investigated the effect of handedness on functional net-
work laterality in 52 left-handed and 52 right-handed individuals (data 
set III) matched by age, gender, ethnicity, education, fMRI data acqui-
sition, data quality and other parameters (Supplementary Table 1).  
Iterative parcellation was applied to each individual subject to identify 
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the 18 networks. Again, the language-related network and the ven-
tral attention-related network showed the strongest lateralization in 
both groups. Compared to left-handed subjects, right-handed subjects 
showed a trend for stronger lateralization in the language-related net-
work (mean LI 0.20 versus 0.16, unpaired two-tailed t-test, t(102) = 1.9,  
P = 0.057), and significantly stronger lateralization in the ventral 
attention-related network (mean LI −0.14 versus −0.07, unpaired 
two-tailed t-test, t(102) = 3.1, P = 0.003) (Fig. 4c).

Comparing parcellation networks with task fMRI
The reliability of task-evoked response in individual subjects is 
affected by many factors, some of which extend to analysis of rest-
ing-state networks and some that are preferential to task fMRI38.  
Many studies have used task fMRI activation maps to validate or eval-
uate the accuracy of results derived from resting-state fMRI. Here, we 
quantified the intra-subject reliability of task fMRI activation maps 
and the functional networks derived from the iterative parcellation. 
For this investigation, two brain functions that are routinely examined 
in preoperative mapping, motor and language functions were assessed 
in data set II (the 100 HCP subjects). The hand motor network and 
the language network of each subject were localized by conventional 
task-evoked responses and by iterative network parcellation.

Task-evoked responses were estimated using single task runs and 
showed a range of intra-subject reliability across two runs. Reliability 
was evaluated using the Dice coefficient across a variety of thresh-
olds (from Z = 1.96 to Z = 10.0, in increments of 0.1). The maximum 
reliability was 40.4% (when Z = 6.76) for the motor task and 34.4% 
(when Z = 1.96) for the language task. Iterative parcellation was then 
performed on short resting-state data segments, with length matched 
to that of the motor and language task runs (3 m 34 s and 3 m 57 s, 
respectively). Compared to the task-evoked responses, the iterative 
parcellation yielded higher reproducibility across two runs (paired 
two-tailed t-test, t(99) = 11.2, P < 0.001, for the hand motor network; 
paired two-tailed t-test, t(99) = 21.9, P < 0.001 for the language net-
work), with Dice coefficients of 66.6% ± 10.2% for the hand motor 
network and 61.5% ± 9.1% (mean ± s.d.) for the language networks. 
Although the task data analyzed here reflect only a subset of possible 
tasks and range of data quality that could be explored, it is notable that 
the present iterative parcellation approach performed comparably and, 
in many individuals, better than traditional task-based analysis.

Validation by electrical cortical stimulation
To further validate the results derived from the iterative parcella-
tion approach, we used a clinical data set from eight surgical patients 
who performed a battery of motor tasks in MRI before surgery (data 
set IV). Resting-state data were also collected in six of the patients. 
Their hand and tongue sensorimotor regions were localized using 
electrical cortical stimulation (ECS), the current ‘gold standard’ for 
preoperative functional mapping. This data set provided an opportu-
nity to evaluate the clinical applicability of the iterative parcellation 
technique. Parcellation was performed in each patient on the basis of 
the motor task fMRI data that were bandpass filtered (0.01– 0.08 Hz) 
and processed in the same way as in the 100 HCP subjects (data set II). 
The hand and tongue regions were also mapped using the traditional 
task-activation approach for comparison.

Sensorimotor regions identified by ECS were used as references 
(Fig. 5a). Motor and sensory regions identified by traditional task 
activation showed low consistency with the ECS maps (Fig. 5b). In 
contrast, the sensorimotor regions identified by iterative parcellation 
were more consistent with the ECS maps (Fig. 5c), suggesting that 
the iterative parcellation technique was valid and could serve as a 

prescreening method for ECS (Supplementary Fig. 6). In addition, 
a parcellation map of multiple functional networks with confidence 
values greater than a predetermined threshold (for example, an arbi-
trary threshold of 1.1) can provide a rough estimate of the ROIs for 
invasive cortical stimulation (Fig. 5d), potentially shortening the 
stimulation procedure.

To assess the potential of our parcellation technique in preopera-
tive mapping, we statistically evaluated the sensitivity and specificity 
of the hand and tongue sensorimotor maps from the eight surgical  
patients in data set IV across different confidence thresholds. 
Sensitivity and specificity of the task fMRI were also computed by 
varying the t thresholds of the task activation. In addition, we masked 
the task-activation maps using the pre-central and post-central gyri 
labels generated by FreeSurfer to improve specificity. This opera-
tion mimics the procedure of human experts, who usually disregard 
the noisy activation responses outside the ROIs. Receiver operating 
characteristic (ROC) curves were then plotted for the iterative par-
cellation algorithm (Fig. 5e), traditional task-activation mapping 
alone and task-activation masked with anatomical labels. The itera-
tive parcellation technique significantly outperformed the other two 
task-based methods and showed a significantly larger area under the 
curve (AUC) (P = 0.008 and P = 0.015, Wilcoxon rank-sum test; AUC 
of iterative parcellation = 0.91, AUC of task fMRI = 0.76, AUC of task 
fMRI masked with anatomical labels = 0.78).

We then applied the iterative parcellation to the pure resting-state 
data in six patients from data set IV (Fig. 5e). The ROC curve was not 
significantly different from the original parcellation results based on 
the task fMRI data (AUC = 0.91 versus 0.89, P = 0.22, Wilcoxon rank-
sum test). Finally, we examined whether using the iterative parcel-
lation was truly advantageous over using the population-based atlas 
for each individual subject (Fig. 5e and Supplementary Fig. 6). The 
iterative parcellation technique significantly outperformed the popu-
lation atlas (AUC = 0.91 versus 0.78, P = 0.015, Wilcoxon rank-sum 
test) in motor mapping.

DISCUSSION
Here we present an approach for parcellating functional networks 
across the cerebral cortex in individuals on the basis of functional 
connectivity. Each brain had unique features. Parcellation networks 
were reproducible within subjects across multiple scans and could cap-
ture inter-individual differences in functional organization, including 
variability in brain lateralization. We found that this approach can 
be applied to various populations and extended to task fMRI data.  
Using invasive cortical stimulation as the gold standard, we evalu-
ated the sensitivity and specificity of iterative functional parcellation 
in surgical patients and compared them to that of conventional task 
fMRI. Our results indicate that the individual cortical parcellation 
technique can correctly localize functional networks in individual 
subjects and has potential for use in clinical applications.

Revealing individual variability in brain organization
Inter-individual variability in human brain organization has long 
been studied39. However, systematic in vivo research on the variability  
in the functional organization of the human brain, especially in the 
patterns of connectivity, has just begun. Variability in functional con-
nectivity has been related to individual differences in human behav-
ior and cognition, such as IQ, musical ability and reading ability24.  
Brain changes associated with neurological and psychiatric disor-
ders are also reflected by variations in functional connectivity40. 
Recent explorations of resting-state functional connectivity in 
healthy humans have suggested that association regions (including 
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the language, executive control and attention networks) show par-
ticularly strong variability that may relate to individual differences 
in behavior31,41. Substantial inter-individual variability in functional 
organization calls for imaging techniques that can capture precisely 
the functional characteristics of each subject. To enable functional 
analyses at the individual-level, Carddock et al. parcellated rs-fMRI 
data into functionally and spatially coherent ROIs that tended to be 
equally sized30. Arslan et al. proposed a cortical parcellation method 
based on spectral graph theory and were able to obtain reliable results 
at the group level; however, inter-subject variability was underesti-
mated and the method aimed to identify a group-wise parcellation 
that could represent each subject in the group42. Goulas et al. parcel-
lated the lateral frontal cortex using a module detection algorithm 
and demonstrated inter-subject variability in these modules; however, 
intra-subject reliability was not evaluated at the same time29. Using 
a region-growing method, Blumensath et al. mapped functional net-
works in individual subjects with high reproducibility28 and found that 
functional connectivity network boundaries might overlap with task 
activations. These important technical developments merit validation, 
especially that based on invasive measures. A precise parcellation 
technique with high sensitivity to individual variations will facilitate  
discovery of meaningful biomarkers for cognitive ability or dis-
ease states and provide greater statistical power for investigating  
behavioral or genetic associations.

Implications for clinical intervention
An individual-level functional atlas has strong implications for clini-
cal practice, especially for surgical planning and brain stimulation 
that depend on precise functional localization. Current preoperative 
mapping with task-based fMRI is hampered by poor SNR, limited 
test-retest reliability and limited overlap with analogous maps derived 
from invasive cortical stimulation43,44, raising questions about its clin-
ical utility. For example, a meta-analysis of 63 published studies found 
that task fMRI has only moderate (~50%) within-subject test-retest 
reproducibility38. In the present study, limited reproducibility was also 
observed between the two runs of task fMRI data in the HCP subjects. 
This was due in part to the limited acquisition length of the task runs 
and variability in data quality, but iterative parcellation based on the 
same amount of data was significantly more reliable. In addition, 
the iterative parcellation can be applied directly to bandpass-filtered 
task fMRI data and produce functional maps comparable to maps 
based on pure resting-state data (Figs. 3d and 5e). In a small group 
of surgical patients, we found that sensorimotor networks could be 
localized with higher accuracy by the iterative parcellation than by 
conventional task fMRI.

The advantage of the iterative parcellation over conventional task 
fMRI may be explained by the different amount of variance in the 
BOLD signal they use for mapping. Task-evoked activity accounts 
for a small percentage of the total variance in fMRI signal and there-
fore provides less stability, as the practical limits of scanning burden 
constrain the amount of task data that can be acquired, especially in 
patient populations. Variance used in task-activation mapping can 
be estimated on the basis of the variance explained by the hemo-
dynamic task model. In the eight surgical patients reported in the 
present study (data set IV), task-related activity in the motor regions 
of interest defined by ECS accounted for only 32.5% of the total vari-
ance in the functional MRI signal. Prior work has shown that coher-
ent spontaneous activity does not cease during task paradigms45.  
Our parcellation approach utilizes spontaneous activity for map-
ping, which may account for the major portion of the variance in task  
fMRI BOLD signal45.

To render this parcellation strategy useful in mapping the language 
and memory networks in patients, further optimization and valida-
tion are necessary. Nevertheless, our preliminary observations indi-
cate that parcellation can reliably identify a strongly left-lateralized 
network overlapping with the regions activated by a language task and 
a right-lateralized network that is located in traditional ventral atten-
tion regions. Additionally, lateralization of these networks may relate 
to handedness. These observations suggest that this iterative individu-
ally tailored parcellation captures a large portion of the individual 
variability present in the organization of cerebral networks.

Improving cross-subject alignment for group analysis
Establishing the functional correspondence between subjects is a pre-
requisite for group-level functional imaging analyses. Although the 
association between brain anatomy and function is not fully under-
stood and can vary across individuals, most fMRI processing tools 
align individual subjects to a common template on the basis of ana-
tomical features such as global morphology or landmarks identified 
by structural MRI46,47. Functional networks are likely to be misaligned 
if they are not tightly linked to the macroscopic anatomy. For exam-
ple, aligning subjects for the investigation of language function can 
be particularly challenging, because the distribution of the language 
network is highly variable and can even be located in different hemi-
spheres in different individuals. Substantial inter-subject variability in 
functional regions was found even after careful alignment of the data 
on the basis of curvature, which largely removed macro-anatomical 
variability19. Recent studies have attempted to align subjects on the 
basis of functional characteristics. By incorporating the inter-subject 
signal correlations into a cortical registration algorithm, Subuncu  
et al. brought functionally similar regions into correspondence during 
a movie-watching task48. However, this strategy relies on consistent 
task activations across subjects. Robinson et al. developed a method 
capable of aligning subjects using a wide variety of characteristics, 
including structure and function49. The authors demonstrated strong 
increases, compared to curvature-based registration, in the cluster 
mass of task activations when subjects were aligned on the basis of 
resting-state functional connectivity. The development of functional 
network parcellation using resting-state connectivity10,11, especially 
parcellation at the individual level14,27, may offer a complementary 
connectivity-based functional localizer for group-level analyses.  
A parcellation like the one we describe here can provide a set of  
functional landmarks for cross-subject registration and lead to new 
strategies for brain image alignment.

Limitations and future directions
The present study has several technical limitations. First, the number 
of networks was selected according to specific technical criteria 
instead of biological considerations10. The fixed number of networks 
may not be appropriate for all individuals, especially for those who 
have experienced functional reorganization due to disease. In some 
patients, certain networks may be completely absent. For example, one 
subject in our study showed substantial reorganization of the tongue 
motor area owing to encephalomalacia (subject 5, Supplementary 
Fig. 6). This change in functional organization led to misalignment of 
the hand motor networks in the parcellation, where the hand network 
spread to lower portions of the post-central gyrus. Thus, additional 
improvement and validation of this iterative functional parcellation 
method are required before it can be applied to patients with distorted 
anatomy. For example, in patients with localized lesions (limited to 
one hemisphere), the iterative functional parcellation could be per-
formed in the healthy hemisphere without distortion, as well as in 

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neurOSCIenCe  VOLUME 18 | NUMBER 12 | DECEMBER 2015 1859

t e C h n I C a l  r e p O r t S

the cerebellum, if no lesions are observed. The functional properties 
in the affected hemisphere could then be estimated on the basis of 
its functional connectivity to the healthy cerebral hemisphere or the 
unaffected cerebellum.

Second, we parcellated the cortex into a relatively small number 
of networks, which can reduce the sensitivity to subtle changes in 
functional networks, such as those due to learning or other expe-
riences. Future development of the parcellation technology should 
aim at mapping functional networks with finer spatial resolution 
and determining the number of networks more flexibly in different  
subjects. A possible strategy is to initiate the iterative parcellation 
from a population-based atlas with a large number of networks and 
gradually adjust the number of networks by merging networks with 
similar time courses (for example, r > 0.5). Once a merger occurs, 
the iterative parcellation can be restarted with the reduced number 
of networks. This strategy flexibly adjusts the number of networks on 
the basis of an individual’s data and can accommodate the need for 
identifying small networks. Iterative parcellation with this flexible 
strategy can also achieve high reproducibility (Supplementary Fig. 7).  
Alternative strategies, such as estimation of regions on the basis of 
local transitions in connectivity properties, are also possible13–15.

Finally, functional maps derived from fMRI data can be influenced 
by various confounding factors. For example, spatial specificity of 
the functional connectivity maps can be influenced by the signal in 
macroscopic veins, and signal correlations can be overstated within or 
between highly vascularized regions50. Thus, inter-subject variability 
observed in functional connectivity patterns can also be confounded 
by variations in vascular anatomy. Although it is difficult to quantify 
the contribution of vascular variation, the high inter-subject vari-
ability in functional connectivity in the association cortex (especially  
in hemispheric lateralization) is unlikely to be dominated by vas-
cular variations, but the contributions of vascular anatomy to the  
topographical maps studied here will be critical.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants and data collection. Four fMRI data sets obtained with different 
imaging parameters were employed in the current study.

Data set I. The first data set consists of 25 healthy subjects (age 51.8 ± 6.99 
(mean ± s.d.), nine female, two left handed) enrolled as a control data set in a 
longitudinal fMRI study on stroke recovery. Participants were screened to exclude 
individuals with a history of neurologic or psychiatric conditions, as well as those 
using psychoactive medications. Each subject underwent five scanning sessions 
within 6 months (7, 14, 30, 90 and 180 d from enrollment). All participants per-
formed two or three resting-state runs per session (6 m 12 s per run) to estimate 
intrinsic functional connectivity. After quality control, 23 subjects who had at 
least two good runs (tSNR > 100) in each session were included in this study  
(mean = 2.02 runs). This data set has been previously reported31. MRI data 
were acquired on a 3 Tesla Siemens TimTrio system (Erlangen, Germany) using 
the 12-channel phased-array coil supplied by the vendor. Structural images 
were acquired using a sagittal MP-RAGE three-dimensional T1-weighted 
sequence (TR = 1,600 ms; TE = 2.15 ms; flip angle = 9°; 1.0 mm isotropic voxels;  
FOV = 256 × 256). Functional data were obtained using a gradient echo- 
planar pulse sequence (TR = 3,000 ms; TE = 30 ms; flip angle = 90°; 3 mm  
isotropic voxels, transverse orientation, 47 slices fully covering cerebral cortex 
and cerebellum). Subjects were instructed to stay awake and keep their eyes open. 
Participants provided written informed consent in accordance with guidelines 
set by the institutional review boards of Xuanwu Hospital.

Data set II. The second data set included 100 young healthy volunteers (the 
‘Unrelated 100’, 54 female, age 22–35 years, except one subject, who was more 
than 36 years old) made publicly available by the Human Connectome Project 
supported by the WU-Minn Consortium51. Written informed consent was 
obtained from each participant in accordance with guidelines and regulations 
approved by the local institutional review board at Washington University in St. 
Louis (IRB #201204036). For each participant, two resting-state fMRI sessions 
(each session consisted of one run with left-to-right direction phase encoding and 
one run with right-to-left direction) and seven task fMRI sessions (each session 
consisted of one run with left-to-right direction phase encoding and one run 
with right-to-left direction) were obtained. The tasks included working memory  
(5 m 1 s per run), gambling (3 m 12 s per run), motor (3 m 34 s per run), language 
(3 m 57 s per run), social cognition (3 m 27 s per run), relational processing  
(2 m 56 s per run) and emotional processing (2 m 16 s per run). A complete 
description of the data set has been published51,52.

All HCP subjects were scanned on a customized Siemens 3T Connectome Skyra 
scanner. Structural images were acquired using the 3D MPRAGE T1-weighted 
sequence with 0.7 mm isotropic resolution (FOV = 224 mm, matrix = 320,  
256 sagittal slices in a single slab, TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, flip 
angle = 8°). The scan parameters of the rs-fMRI data were as follows: TR = 720 ms;  
TE = 33.1 ms; flip angle = 52°; FOV = 208 × 180 mm; slice thickness = 2.0 mm; 
72 slices; 2 mm isotropic voxels, multiband factor = 8; echo spacing = 0.58 ms; 
bandwidth (BW) = 2,290 Hz/px; time points = 1,200. The task acquisitions were 
identical to the resting-state fMRI acquisitions in order to provide maximal  
compatibility between task and resting data.

Data set III. The third data set included data of 52 left-handed and 52 matched 
right-handed subjects (28 female in each group, 18–25 years) that were acquired 
as part of the Brain Genomics Superstruct Project53. All participants provided 
written informed consent in accordance with guidelines set by the Institutional 
Review Boards of Harvard University or Partners Healthcare. Each subject per-
formed two resting-state (eyes open) runs in MRI scanner (6 m 12 s per run). 
All data were collected on matched 3T Tim Trio scanners (Siemens, Erlangen, 
Germany) using a 12-channel phased-array head coil. Images were acquired 
using the gradient-echo echo-planar pulse sequence (TR = 3,000 ms, TE = 30 
ms, flip angle = 85°, 3 × 3 × 3 mm voxels, FOV = 216 and 47 slices collected 
with interleaved acquisition with no gap between slices). Whole brain coverage 
including the entire cerebellum was achieved with slices aligned to the anterior 
commissure-posterior commissure plane using an automated alignment proce-
dure, ensuring consistency among subjects54. Structural data included a high-
resolution multi-echo T1-weighted magnetization-prepared gradient-echo image 
(TR = 2,200 ms, TI = 1,100 ms, TE = 1.54 ms for image 1 to 7.01 ms for image 4, 
flip angle = 7°, 1.2 × 1.2 × 1.2 mm and FOV = 230). Subjects were instructed to 
stay awake, keep their eyes open, and minimize head movement; no other task 
instruction was provided. The handedness of each subject was assessed via the 

Edinburgh handedness inventory55. The demographic information of the 52 pairs 
of subjects and the matching criteria are listed in Supplementary Table 1.

Data set IV. The fourth data set included eight surgical candidates (age 19.5 
± 5.0; five female; one left handed) with intractable epilepsy. This was a subset 
of patients from a published study of cortical mapping using gamma activity 
recorded from subdural electrode grids56. The experiment included a preop-
erative fMRI scan, surgical implantation of subdural electrode grids and direct 
electrical cortical stimulation (ECS) using these grids. No seizures were observed 
1 h before or after the fMRI or ECS in all patients. The locations of the elec-
trodes and how long they would stay implanted were determined solely by clinical  
criteria. Written consent was obtained from each patient or their guardians, and 
the experiments were approved by the Ethics Committees of the Second Affiliated 
Hospital of Tsinghua University. MRI data were collected on a Philips Achieva 
3.0 Tesla TX whole body MR scanner using an 8-channel SENSE head coil. 
Structural images were acquired using a sagittal magnetization-prepared rapid  
gradient echo T1-weighted sequence (TR = 8.1 ms, TE = 3.7 ms, TI = 1,000 ms, 
flip angle = 8°, FOV = 230 mm × 230 mm, matrix size = 230 × 230, slices = 180, 
voxel size = 1 × 1 × 1 mm). Functional data were collected using an echo planar 
imaging sequence (TR = 3,000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 mm ×  
192 mm, matrix size = 64 × 64, slices = 47, voxel size = 3 × 3 × 3 mm).

Two types of functional runs were collected from the epilepsy patients: task 
activation runs (all eight subjects) and resting state runs (six of eight subjects). 
All eight subjects performed five motor task activation runs. Each run consisted 
of one type of self-paced movement (left hand, right hand, left foot, right foot, or 
tongue) consistent with standard preoperative mapping paradigms. Each run was 
144 s long and consisted of six 12-s task blocks interleaved with six 12-s rest inter-
vals. Patients performed motor tasks according to the instructions presented on 
the computer screen using the Psychophysics Toolbox in MATLAB (MathWorks, 
Inc.). Six subjects also underwent two resting-state runs (360 s each run), during  
which they were asked to fixate on a crosshair in the center of the screen.  
These pure resting state runs were collected for comparison purposes with the 
maps created based on the task runs.

After an adequate number of seizures had been recorded, bedside ECS map-
ping was performed to identify the sensorimotor cortices56. Using an Ojemann 
Cortical Stimulator (Integra Life-Sciences), trains of 60-Hz biphasic pulses lasting  
2–5 s were delivered to selected pairs of electrodes. The current intensity of the 
stimulation started at 2 mA and was gradually increased until patients showed or 
reported symptoms related to the sensorimotor cortex or the stimulus strength 
reached 15 mA. Each stimulation involved a pair of electrodes; thus, both  
electrodes were considered positive when a hand or tongue movement or  
sensory was produced.

data processing. Data set I. Resting-state fMRI data of the 23 subjects in this 
longitudinal data set were processed using the procedures described8,10,57. The 
following steps were performed: (i) slice timing correction (SPM2; Wellcome 
Department of Cognitive Neurology, London, UK), (ii) rigid body correction for 
head motion with the FSL package58,59, (iii) normalization for global mean signal 
intensity across runs, and (iv) bandpass temporal filtering (0.01– 0.08 Hz), head-
motion regression, whole-brain signal regression, and ventricular and white- 
matter signal regression. The BOLD frames were not censored based on head 
motion but all runs included in the present study showed temporal SNR > 100.

Structural data were processed using FreeSurfer version 4.5.0. Surface mesh 
representations of the cortex from each individual subject’s structural images were 
reconstructed and registered to a common spherical coordinate system46. The 
structural and functional images were aligned using boundary-based registra-
tion60 within the FsFast software package (http://surfer.nmr.mgh.harvard.edu/
fswiki/FsFast). The preprocessed resting-state BOLD fMRI data were then aligned 
to the common spherical coordinate system via sampling from the middle of the 
cortical ribbon in a single interpolation step10. FMRI data of each individual 
were first registered to the FreeSurfer template that consisted of 40,962 vertices 
in each hemisphere. A 6-mm full-width half-maximum (FWHM) smoothing 
kernel was then applied to the fMRI data in the surface space. The smoothed data 
were then down-sampled to a mesh of 2,562 vertices in each hemisphere using 
the mri_surf2surf function in FreeSurfer software.

Data set II. The ‘minimally processed’ fMRI data of the HCP subjects were 
used, which had been preprocessed in the HCP pipeline using FSL (FMRIB 
Software Library), FreeSurfer, and the Connectome Workbench software37,61–63. 
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The preprocessed data were projected to the FreeSurfer template with a mesh of 
40,962 vertices in each hemisphere. The following steps were then performed: (i) 
demeaning and detrending across each run, (ii) bandpass filtering (0.01–0.08Hz), 
(iii) head-motion regression and whole-brain signal regression and (iv) smooth-
ing with a 6-mm FWHM smoothing kernel in the surface space. The data were 
then down-sampled to a mesh of 2,562 vertices in each hemisphere using the 
mri_surf2surf function provided by FreeSurfer. For connectivity analyses, 
the task fMRI data were processed in the same way as the resting-state data.  
To map the brain regions activated by the seven tasks, fixed-effects analyses  
were performed using FEAT37,61.

Data set III. Resting-state fMRI data of the 52 pairs of left-handed and  
right-handed subjects were preprocessed identically to the first data set.

Data set IV. For parcellation analysis, bandpass filtered task fMRI and pure 
resting-state fMRI data of the surgical patients were preprocessed identically 
to the first data set. Conventional task-evoked activation maps in this data set 
were estimated using the general linear model. Regressors of no interest included 
motion correction parameters and low frequency drift. The task-induced BOLD 
response was modeled by convolving the hemodynamic response function with 
the experimental design. Intracranial electrodes were registered to the cortical 
surface using in-house software56 to enable the comparison between the ECS 
maps and the functional parcellation. A post-implantation CT scan was obtained 
within 24–48 h after the implant surgery for localization of the electrodes. The 
post-implantation CT images were registered to T1-weighted MRI images using 
a mutual-information-based linear transform56. Owing to postoperative edema, 
electrodes extracted from the post-implantation CT images may appear off the 
surface reconstructed from the presurgical MRI. Our in-house tool allows us to 
manually adjust the locations of electrodes according to the 3D shape of the corti-
cal surface. MRI surface vertices within a 6 mm radius of the positive electrodes 
were defined as positive. This resulted in an ECS map on the surface that can be 
directly compared to the map obtained from the functional parcellation.

Population-based functional atlas. A functional network atlas was estimated 
based on 1,000 healthy subjects10 and projected onto the individual subject’s 
cortical surface using the FreeSurfer software. The original atlas included 17 
networks where hand sensorimotor areas were not separated from other areas. 
Given the common need to map hand areas in surgical patients, we identified 
the hand sensorimotor areas from this atlas on the basis of activations in a hand 
motor task64. As a result, this population atlas consisted of 18 networks and 
would serve as the initial guess of the functional network organization in an 
individual subject’s brain.

evaluating test-retest reliability and inter-subject variability of the maps 
derived from the iterative parcellation. Intra-subject test-retest reliability of 
the parcellation results was computed using the Dice coefficient after projecting 
the parcellation results back to each subject’s cortical surface. This can be simply 
computed as the percentage of vertices that were assigned to the same network 
in two sessions. To assess the reliability of the parcellation technique at the group 
level, Dice coefficients were then averaged across all subjects. Inter-subject vari-
ability was computed on the FreeSurfer surface template (2,562 vertices in each 
hemisphere) based on the Dice coefficient between any pair of subjects and then 
averaged across all pairs.

comparing the task fmRI and iterative parcellation with the ecS findings. For 
the patient data set (data set IV), the results of different mapping modalities were 
projected to each patient’s cortical surface for comparison with the ECS findings. 
Taking the ECS findings as references, the sensitivity and specificity of the activa-
tion map and the network parcellation were quantified. Sensitivity was computed 
by dividing the number of true positives (fMRI positive vertices that were also 
positive in the ECS maps) by the number of true positives plus false negatives 
(i.e., total vertices positive in the ECS maps). The specificity was computed by the 
number of true negatives (fMRI negative vertices that were also negative in the 
ECS maps) divided by the number of true negatives plus false positives (i.e. total 
vertices negative in the ECS maps). ROC curves were obtained by calculating the 

sensitivity and specificity across a wide range of different thresholds. The area 
under the curve was computed for each subject and compared across methods 
using a Wilcoxon paired nonparametric test.

estimating functional lateralization. Lateralization was computed for each net-
work derived from the iterative parcellation. Vertices that belonged to a specific 
network were separated into left-hemisphere and right-hemisphere portions.  
A lateralization index was then computed based on the following equation: 

LI V V V VL R L R= − +( )/( )

Where VL is the number of vertices in the left hemisphere, VR is the number of 
vertices in the right hemisphere.

Visualization and statistics. The iterative parcellation was performed on the 
FreeSurfer fsaverage4 template and the resulting network labels were upsampled 
to each individual subject’s own cortical surface using the mri_surf2surf function. 
The labels were then merged into a single ‘annotation’ file using the write_annota-
tion function provided by FreeSurfer. The parcellation results were visualized in 
each individual’s cortical surface using FreeSurfer.

No statistical methods were used to pre-determine sample sizes but our sample 
sizes are larger than or similar to those reported in previous publications31,37,65,66. 
Within each data set, no randomization or blinding was employed to separate 
subjects into different groups. Two-tailed t-test was used for all comparisons in 
this study except for the experiment shown in Figure 5, which used Wilcoxon 
rank-sum test. For the t-tests, data distribution was assumed to be normal, but 
this was not formally tested.

code availability. The code of the iterative parcellation algorithm is available 
upon request.

A Supplementary methods checklist is available.
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