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A B S T R A C T

Affective disorders such as major depression are common but serious illnesses characterized by altered processing
of emotional information. Although the frequency and severity of depressive symptoms increase dramatically over
the course of childhood and adolescence, much of our understanding of their neurobiological bases comes from
work characterizing adults’ responses to static emotional information. As a consequence, relationships between
depressive brain phenotypes and naturalistic emotional processing, as well as the manner in which these asso-
ciations emerge over the lifespan, remain poorly understood. Here, we apply static and dynamic inter-subject
correlation analyses to examine how brain function is associated with clinical and non-clinical depressive
symptom severity in 112 children and adolescents (7–21 years old) who viewed an emotionally evocative clip
from the film Despicable Me during functional MRI. Our results reveal that adolescents with greater depressive
symptom severity exhibit atypical fMRI responses during movie viewing, and that this effect is stronger during
less emotional moments of the movie. Furthermore, adolescents with more similar item-level depressive symptom
profiles showed more similar brain responses during movie viewing. In contrast, children’s depressive symptom
severity and profiles were unrelated to their brain response typicality or similarity. Together, these results
indicate a developmental change in the relationships between brain function and depressive symptoms from
childhood through adolescence. Our findings suggest that depressive symptoms may shape how the brain re-
sponds to complex emotional information in a dynamic manner sensitive to both developmental stage and af-
fective context.
1. Introduction

When it comes to interpreting emotional events, truth is subjective.
Across individuals, variability in state and trait psychological charac-
teristics can influence the ways in which we attend to, interpret, and
make decisions about affective information. In their pathological forms,
biases in emotional information processing, including increased focus on
negative stimuli and overly pessimistic interpretations of emotional
events, reflect core features of affective illnesses such as major depressive
disorder (Lepp€anen, 2006; Beck and Clark, 1988; Gotlib and Joormann,
2010).

Depression symptom prevalence, however, is not static across the
lifespan. Rather, risk for illness onset increases dramatically during
adolescence (Hankin et al., 1998; Lee et al., 2014), and depression is
currently the largest single contributor to adolescent disability (Gore
ent of Psychology, 402 Sheffield
Gruskin), mdrosenberg@uchicago

7
14 August 2019; Accepted 19 S

cess article under the CC BY-NC-
et al., 2011). Although substantial progress has been made in identifying
psychological characteristics and cognitive biases that increase the like-
lihood of future mental health problems in children and adolescents
(Kovacs et al., 1989), relationships between individual responses to
complex emotional stimuli, symptoms of depression, and neuro-
developmental processes remain poorly understood. Accordingly, the
aim of the present study is to investigate relationships between brain
responses to emotional information and depression symptoms in children
and adolescents.

Underpinning the emergence of affective symptoms and associated
illness risk, human brain development is influenced by a complex series
of dynamic processes ranging from shifts in profiles of gene expression to
changes in environmental pressures (Stiles and Jernigan, 2010; Kang
et al., 2011). The passage from childhood to adulthood, in particular, is
marked by significant social and biological transitions (Casey et al., 2008;
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Paus et al., 2008), including hierarchical changes in brain structure and
function that underlie the gradual development of adaptive emotion
reactivity and regulation (Casey et al., 2019). As one example, the stag-
gered development of the amygdala and the medial prefrontal cortex
(mPFC) contributes to prominent increases in emotional difficulties that
characterize adolescence (Casey et al., 2019). This scheduled maturation
of subcortical and cortical systems is reflected in a developmental switch
in amygdala-mPFC functional connectivity and alterations in amygdala
responses to emotionally evocative stimuli (Gee et al., 2013; Somerville
et al., 2011; Hare et al., 2008). The characterization of age-dependent
changes in brain function would provide a tremendous opportunity to
understand how neurodevelopment shapes both individual differences in
emotion processing and the emergence of depression.

Developmental changes in brain function with consequences for in-
dividual differences in affect are pronounced in frontolimbic circuitry but
are also evident in widely distributed patterns throughout the brain. In
adults, distributed patterns of brain functioning reflect individual
symptom profiles of patients with depression (Drysdale et al., 2017;
Maglanoc et al., 2019) and other psychiatric disorders (Reinen et al.,
2018; Xia et al., 2018). Much like a fingerprint, spatiotemporal patterns
of brain function allow for the identification of individuals within a
broader population (Finn et al., 2015) and the prediction of behavioral
phenotypes across cognition, personality, and emotion (Kong, 2018;
Rosenberg et al., 2018). These individual-specific functional profiles
emerge over the course of development, settling into more stable, idio-
syncratic patterns during adolescence (Kaufmann et al., 2017). Delays in
this process of differentiation are associated with the expression of psy-
chiatric symptoms, including those related to depression (Kaufmann
et al., 2017). Accordingly, data-driven approaches that consider the
broad neurobiological changes associated with adolescence can com-
plement work focused on specific regions or circuits of interest to illu-
minate the sources of individual variation that contribute to symptom
burden and risk for depression across development.

Embedded within the gradual process of neurodevelopment, brain
responses continually change over shorter timescales as individuals react
to, and interact with, their environments. The diverse repertoire of these
moment-to-moment fluctuations in brain activity and functional con-
nectivity are instrumental for higher-order cognition (Cole et al., 2014;
Breakspear, 2017). Furthermore, impairments in functional brain dy-
namics have been implicated in psychiatric illness (Reinen et al., 2018;
Calhoun et al., 2014). Although task-based and task-free fMRI (functional
magnetic resonance imaging) have dominated modern research on the
biological basis of depression, much of the work in these domains has
relied on static analytic approaches that assume stable brain responses
across time (Bullmore and Sporns, 2009). An emerging dynamic para-
digm that combines the targeted nature of task-based imaging with the
minimal demands of resting-state research is movie-watching fMRI
(Vanderwal et al., 2018; Hasson et al., 2008). In addition to providing
high-quality data by reducing head motion and increasing compliance
(Vanderwal et al., 2015, 2018), movie-watching fMRI facilitates the
study of naturalistic affective processing. Movies, with their dynamic,
feature-rich content, can elicit emotional responses similar to those
experienced in real-world situations (Hasson et al., 2008; Gross and
Levenson, 1995). A powerful approach used to study these film-induced
brain responses is inter-subject correlation (ISC) (Hasson et al., 2004).
This method describes the similarity between multiple individuals’ brain
responses to a time-locked stimulus. ISC has proven useful for identifying
the possible brain bases of emotion processing in healthy individuals
(Nanni et al., 2018; Nummenmaa et al., 2012, 2014) and group differ-
ences in adult depression (Guo et al., 2015; Hyett et al., 2015). However,
relationships between brain responses to naturalistic affective stimuli
and depressive symptoms remain poorly understood, especially in
developing populations.

To characterize relationships between functional brain responses to
emotional information and depression symptoms, we analyzed neuro-
imaging and questionnaire data acquired from 112 children and
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adolescents by the Healthy Brain Network project (Alexander et al.,
2017). Informed by recent work showing a distributed decrease in ISC in
adults with depression (Guo et al., 2015), we tested the hypotheses that
participants with greater depressive symptom severity would exhibit
lower ISC and that pairs of participants who were more similar in their
depressive symptom profiles would share more similar fMRI responses to
the movie. First, we show that synchronization of brain activity, indexed
with ISC, scales with depressive symptom severity in adolescents but not
children. Next, we demonstrate that the synchrony of brain responses, as
well as the relationship between this synchrony and depressive symp-
toms, is influenced by the emotional content of the movie. Finally, we
show that patterns of movie-evoked brain activity are common between
adolescents, but not children, with similar item-level depressive symp-
tom profiles. These results suggest that depressive symptoms influence
how the brain responds to emotional information in a dynamic manner
that is sensitive to both developmental stage and moment-to-moment
fluctuations in affective content.

2. Methods

To understand relationships between naturalistic emotional process-
ing and depressive symptoms across development, we characterized
children’s and adolescents’ fMRI signal responses to an emotionally
evocative clip from the film Despicable Me (Fig. 1). Specifically, we asked
whether the “typicality” of an individual’s blood-oxygenation-level-
dependent (BOLD) signal time-courses—that is, their similarity to the
rest of the group—was related to their depressive symptom severity
measured with self-report responses to the Moods and Feelings Ques-
tionnaire (MFQ-SR) (Angold et al., 1995). We next asked whether re-
lationships between spatiotemporal activity patterns and depressive
symptoms were influenced by the emotional content of the film, and
whether individuals with more similar patterns of brain activity reported
more similar symptom patterns. Of note, our participant sample includes
children and adolescents with and without diagnoses of depression and
other comorbid disorders (Supplementary Table 1). Here we focus on
symptom severity and item-level profiles rather than clinical diagnosis to
characterize dimensional, transdiagnostic relationships between brain
function and behavior.

2.1. Participants

Neuroimaging and questionnaire data from 563 participants were
downloaded from the data portal for the Child Mind Institute’s Healthy
Brain Network (HBN) project (Alexander et al., 2017), a large, ongoing
initiative that has been collecting data from a high-risk community
sample of children and adolescents with perceived clinical concern. All
participants provided written consent or assent, and consent was ob-
tained from the parents or legal guardians of participants younger than
18 years old. The HBN project was approved by the Chesapeake Insti-
tutional Review Board. Of all the participants whose anatomical scans
passed visual inspection (n¼ 324) and had complete Despicable Me data
(n¼ 313), only those with acceptable levels of head motion (defined a
priori as maximum head displacement<3mm and mean framewise head
displacement <0.15mm on the functional scan; n¼ 153) were included
in our analyses. Finally, participants without self-report scores on the
Moods and Feelings Questionnaire (n¼ 41) were excluded, leaving 112
participants (65 F; mean age¼ 12.7� 3.3 years, range¼ 7–21 years) for
the final analyses.

2.2. MRI data collection

All MRI data used in this study were collected at the HBN Rutgers
University Brain Imaging Center site on a Siemens 3T Tim Trio magnet.
Key parameters for the functional scan are as follows: TR¼ 800ms,
TE¼ 30ms, # slices¼ 60, flip angle¼ 31�, # volumes¼ 750,
voxel size¼ 2.4mm. Complete information regarding the scan



Fig. 1. Typicality, dynamic typicality, and pairwise similarity analysis pipelines. (A) Typicality analysis: Functional typicality for each participant and each brain
region (parcel) was assessed with the Pearson correlation between each individual’s BOLD response time-course and the group average time-course from the
remaining participants. The resulting functional typicality vector was Spearman-correlated with depressive symptom scores. Permutation testing was used to assess
significance. (B) Dynamic typicality analysis: ISC was estimated at each functional time point using a sliding window/weighted average approach (see Methods). The
typicality correlation described in (A) was applied at each time point. The association between fluctuations in emotional content and the functional typicality/
symptom severity relationship was evaluated using feasible Generalized Least Squares (fGLS) regression. (C) Pairwise similarity analysis: BOLD time-course similarity
between every pair of participants was calculated via Pearson correlation. The resulting values were related to similarity in depressive symptom profiles through
Spearman correlations and significance was determined through permutation testing.
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parameters used for the Healthy Brain Network project can be found at:
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
MRI%20Protocol.html.

2.3. Depressive symptom inventory

Self-report responses to the Moods and Feelings Questionnaire (MFQ-
SR) were used to quantify depressive symptom severity and profiles. The
MFQ-SR is a 33-item questionnaire used to inventory core depressive
symptomatology in clinical and sub-clinical pediatric populations
(Angold et al., 1995). All HBN participants over eight years of age as well
as a subset of seven-year-olds were administered the MFQ-SR. Missing
item-level responses (3/3696) were imputed based on the mean response
across the full sample. Mean MFQ-SR scores did not differ between the
3

child and adolescent age-groups (child: M¼ 14.7� 9.4; adolescent:
M¼ 13.4� 11.4; t110¼ 0.65, P¼ .52), and a Kolmogorov-Smirnov test
revealed no significant difference in score distributions between the
groups (D¼ 0.20, P¼ .18). Independent samples t-tests revealed that
mean item-level responses were indistinguishable between groups on all
but one question (individual question |t-statistics|<1.98, Ps>.05; MFQ
item 13 [“I was talking more slowly than usual”]: t110¼ 2.16, P¼ .03),
suggesting that average depressive symptom profiles were consistent
across the two groups. Although the MFQ-SR authors do not recommend
a specific diagnostic cut-off, previous work has determined that a score of
29 can distinguish individuals experiencing a current major depressive
event (Daviss et al., 2006).

All participants were also administered the KSADS-COMP (Kaufman
et al., 1997), a semi-structured DSM-5-based psychiatric interview, by a
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licensed clinician. Consensus DSM-5 diagnoses were then generated for
each participant following the completion of the clinical interview and
other study procedures. In the adolescent group, 12/50 of the partici-
pants received at least one depressive disorder diagnosis, as opposed to
6/62 of the participants in the child group. Because both groups shared
similar depression score distributions but differed in their proportions of
diagnoses, we calculated Cronbach’s alpha for MFQ-SR responses in both
groups as a way of ensuring that our participants were accurate
self-reporters of their symptoms. Internal reliability was high for both
groups (child: alpha¼ .86, adolescent: alpha¼ .94). Data reflecting
symptom onset were unavailable at the time of writing, but disease
duration data were available for participants who entered the HBNwith a
depression diagnosis and history of treatment (6/112). Of these six
participants, five were in the adolescent group (mean disease dura-
tion¼ 2.46 years) and one was in the child group (disease duration¼ 4.5
years). Only 16/112 (10 children, 6 adolescents) participants did not
receive any consensus DSM-5 diagnosis. Reflecting the significant het-
erogeneity of our sample, common (non-depressive) primary diagnoses
included attention deficit hyperactivity disorder (39/112), anxiety dis-
order (20/112), and specific learning disorder (9/112).

2.4. Movie clip and emotional content ratings

Functional MRI data were collected while participants viewed a 10-
min clip from the movie Despicable Me (01:02:09–01:12:09; presenta-
tion details available at http://fcon_1000.projects.nitrc.org/indi/cmi
_healthy_brain_network/MRI%20Protocol.html) (Vanderwal et al.,
2018). Twenty adult raters provided continuous ratings of the emotional
valence of the clip on a scale from 1 to 9 (most negative to most positive)
three times each using a custom PsychoPy (v3.1.2) script (Peirce, 2007).
Across all 60 trials, the average valence rating was 4.97 (5¼ neutral)
with a standard deviation of 1.44. Inter-rater correlation (the average of
every participant’s average rating time series Pearson-correlated with the
corresponding time series from every other participant) was 0.74, and
average intra-rater rater correlation (the average correlation of every pair
of rating runs for each participant) was 0.79. The 60 rating trials were
individually z-scored (to account for variability in raters’ use of the
numeric scale) and averaged across raters and within TRs to yield an
emotional valence vector. An emotional intensity vector was then
generated using the absolute value of the emotional valence vector. Line
plots showing the group and individual emotional valence and intensity
ratings are shown in Supplementary Fig. 1. To control for the effects of
non-emotional aspects of the film on ISC, one rater (author D.G.) recor-
ded the number of faces present on the screen at each TR using a Psy-
choPy script (averaged across three viewings). Visual and auditory
intensity (brightness and loudness) of the movie were also calculated at
each TR using the SaliencyToolbox (Walther and Koch, 2006) and a
custom Matlab script (which operationalized volume as dynamic peak
signal amplitude of the clip’s audio), respectively.

2.5. fMRI data preprocessing

Functional data were preprocessed in AFNI (Cox, 1996). Three vol-
umes were first removed from the start of each 10-min run. Functional
images were then despiked, corrected for head motion, aligned to the
corresponding skull-stripped anatomical image with a linear trans-
formation and then to the MNI atlas via nonlinear warping, and spatially
smoothed with a 4mm full-width at half-maximum filter. Covariates of
no interest, including a 24-parameter head motion model (6 motion
parameters, 6 temporal derivatives, and their squares) and mean signal
from subject-specific eroded white matter, ventricle, and whole-brain
masks were regressed from the data. Data were band-pass filtered from
0.01 to 0.1 Hz. Temporal filtering was performed because our research
question primarily concerned dynamic emotional information, which is
understood to fluctuate at frequencies below 0.10 Hz (Nastase et al.,
2019). ISC is also most pronounced at low (<0.10 Hz) frequencies,
4

although ISC in frequency bands below 0.01 Hz could reflect spurious
effects (Kauppi et al., 2010), thus motivating our lower boundary of
0.01Hz. Voxel-wise BOLD signal time-courses were averaged within re-
gions of interest using a 268-node whole-brain parcellation (Shen et al.,
2013) to reduce both the number of analyses performed and the impact
of age-dependent differences in functional topography on our results.
MNI coordinates and network affiliations for all of the parcels mentioned
in this study can be found at https://bioimagesuiteweb.github.io/web
app/connviewer.html.

2.6. Static inter-subject correlation (ISC) analyses

Two static ISC analyses, evaluating participants’ functional typicality
and pairwise symptom profile similarity, were performed using the
parcellated fMRI data to characterize relationships between depressive
symptoms and BOLD responses to the emotional movie.

Functional typicality: For every parcel, each participant’s BOLD signal
time-course was z-standardized and Pearson-correlated with the average
BOLD signal time-course from the rest of the group (Fig. 1A). This pro-
cedure resulted in a 112 subject x 268 parcel typicality matrix. The col-
umns of this typicality matrix were related to MFQ-SR scores through
Spearman partial correlations (controlling for age, sex, and mean
framewise head motion) to reveal parcels in which BOLD signal time-
course typicality was associated with depressive symptom severity.

Because each participant’s BOLD time-course is used to calculate
every other participant’s degree of ISC, parametric statistical tests that
assume independence across measurements should not be used with ISC
values (Kauppi et al., 2010). Statistical significance of the relationships
between BOLD signal typicality and depressive symptom severity was
therefore evaluated using nonparametric significance testing. First, the
order of the questionnaire variables was randomly shuffled such that one
participant’s typicality score was paired with a random participant’s
MFQ-SR score, age, mean framewise head motion, and sex. Spearman
partial correlations were then performed, and the process was repeated
10,000 times to generate a null distribution. Given that we hypothesized
that adolescents would show the negative association between functional
typicality and depression that had previously been reported in the adult
literature (Guo et al., 2015), we conducted one-tailed significance
testing. We also expected the pairwise similarity analysis to yield a
similar effect due to its conceptual and mathematical overlap with the
typicality analysis. The reported P values were accordingly calculated
using the following one-tailed formula:

P ¼ (1þ # of null Fisher’s z-values � observed Fisher’s z-value)/
10001.

In order to test the extent to which the relationship between func-
tional typicality and depression score was consistent across the whole
brain, we averaged the Fisher’s z-values obtained for each parcel in the
real data to get the observed mean rho value. We then computed the
same average z-value for each permutation of the null data and per-
formed the following one-tailed test:

P ¼ (1þ # of null mean Fisher’s z-values � observed mean Fisher’s z-
value)/10001.

Pairwise symptom profile similarity: For every possible pair of 112
participants, a phenotypic matrix was constructed by finding the L1
(Manhattan) distance, a measure appropriate for ordinal and trinary data
(e.g. (Chekroud et al., 2017); high L1 distance¼ less similar), between
each pair’s item-level responses to the MFQ (Fig. 1C). Next, parcel-level
BOLD time-courses from the first participant were z-standardized and
Pearson-correlated with corresponding time-courses from the second to
create a 112� 112 BOLD similarity matrix for every parcel. Correlation
coefficients were Fisher z-transformed, averaged across all subject pairs,
and transformed back to r values to generate the average ISC maps shown
in Fig. 2A. A representational similarity analysis (Kriegeskorte et al.,
2008) using Spearman partial correlations (controlling for differences in
age, sex, andmean framewise headmotion) was then performed to reveal
parcels in which more similar BOLD time-courses are associated with
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Fig. 2. Parcel-level inter-subject correlations and depression score distributions across childhood and adolescence. (A) Inter-subject correlation analyses reveal
consistent participant responses to movie viewing with a non-uniform spatial distribution across cortex. (B) Depression (MFQ-SR) score means and distributions were
similar across the child (14.7� 9.4 [SD]) and adolescent (13.4� 11.4) groups (t110¼ 0.65, P¼ .52; Kolmogorov-Smirnov test; D¼ 0.20, P¼ .18).
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more similar depressive symptom profiles. Significance for these results
was tested using a permutation design analogous to the one used in the
typicality analyses. Specifically, each participant pair’s item-level MFQ
responses, as well as their similarity in age and head motion (absolute
value of the difference between the two participant’s ages and mean
framewise displacement values) and sex (binary classification for same
vs. different), were associated with a random pair’s functional similarity
correlation coefficient, and the analysis was repeated 10,000 times.

Differences in the static ISC/depressive symptommaps (typicality and
similarity; Supplemental Fig. 2) for the two age groups were assessed by
first Fisher transforming the observed correlation coefficients and the
null coefficients generated during permutation testing. For each parcel,
the adolescent group’s Fisher’s z-value was subtracted from that of the
child group, and the significance of this difference was evaluated using
the following one-tailed formula as we expected the adolescents, being
closer in age to the adults, to more strongly exhibit the negative rela-
tionship previously observed in adults (Guo et al., 2015):

P¼ (1þ# of null differences in child� adolescent Fisher’s z-values�
observed difference in child � adolescent Fisher’s z-values)/10001.

Fisher’s z-values were then transformed back to rho values for
visualization.

2.7. Dynamic inter-subject correlation analyses

Dynamic ISC: In order to evaluate how the content of the emotional
movie drives changes in neural synchronization across participants, we
performed an exploratory dynamic ISC analysis. Parcel-level dynamic ISC
(i.e., functional typicality) time-courses were calculated for every
participant using a tapered cosine sliding window approach
(width¼ 30 TRs, taper cosine fraction ¼ 0.95; Fig. 1B). A tapered win-
dow was selected to reduce the influence of time-points at the extremes
of the window by assigning greater weight to time-points that are closer
to the window’s center. This yields an observed statistic (here, a mean of
correlation values) that is not dramatically affected by the inclusion of
new points as the window shifts.

The static typicality analysis detailed above was initially performed
on the first 24 s of the time-courses and then repeated after sliding the
5

window by 1 TR until the end of the clip was reached. The sliding win-
dow parameters chosen for this analysis were motivated by prior
research and represent a balance between capturing enough time points
to calculate stable correlation coefficients and keeping the window short
enough to isolate transient ISC dynamics (Nummenmaa et al., 2012;
Geerligs et al., 2018; Trost et al., 2015). The correlation coefficients in
the resulting ISC time-courses were then Fisher z-transformed to generate
a 268 parcel x 718 TR matrix for each subject reflecting their parcel-level
fluctuations in synchrony with the rest of the group over the course of the
movie clip.

To relate the windowed ISC time-courses to the movie vectors
(emotional intensity and emotional valence, controlling for the number
of faces on the screen, brightness, and loudness), estimates of ISC at each
TR were obtained by first identifying every window in which a given TR
was included and then taking the weighted average of those windows’
ISC z-values (with the weights being derived from the tapered window)
(Geerligs et al., 2018). This approach yielded a 268 parcel x 747 TR
matrix for each subject containing dynamic ISC time-courses for every
parcel. The parcel x TR matrices were then z-standardized, averaged
across participants, and zero-padded with three columns to account for
the TRs discarded at the beginning of the run. The first and final 15 TRs
were excluded from the following analyses as the ISC estimates for these
TRs were based on a small number of windows, and 6 TRs were removed
to account for hemodynamic delay, yielding 714 TRs for regression
analysis.

Given the high degree of autocorrelation present in the movie feature
and ISC time-courses, feasible Generalized Least Squares regression
(fGLS) was used to identify how ISC scales with the emotional content of
the movie. FGLS accounts for autocorrelation by minimizing the squared
Mahalanobis distance of the ordinary least squares (OLS) error terms
based on an estimation of their variance-covariance matrix, and GLS has
previously been leveraged to analyze fMRI/movie feature time-courses
(Dayan et al., 2018). A fourth-order autoregressive model was used to
estimate the covariance structure of the OLS error terms based on a visual
inspection of the partial sample autocorrelation functions of the OLS
residual time series according to the Box-Jenkins methodology (Box and
Jenkins, 1970). Of note, the residuals for each fGLS regression have a
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different autocorrelation structures. However, because much of the
autocorrelation in the fMRI data was imposed by our analyses in a uni-
form fashion across all parcels, these differences were not extreme. In
addition, although visual inspection revealed that some regressions may
have been better characterized with higher-order AR models, lower P
values were not associated with higher degrees of autocorrelation for any
of our analyses. Thus, using a fourth-order model did not bias our results
towards significance.

Importantly, because relationships between clinical symptoms and
high-level features of the stimulus such as emotional content (here,
emotional intensity and valence) can be confounded by lower-level fea-
tures such as visual intensity (Raila et al., 2015), time-courses of
low-level stimulus features (brightness and loudness) as well as
baseline social content (faces) were also included in the fGLS regression.
A t distribution (709 degrees of freedom) was used for two-tailed sig-
nificance testing of the standardized regression coefficients. Two
tailed-significance testing was performed for the dynamic analyses
because we did not have strong a priori reasons to expect that the fGLS
results would be restricted to a particular direction (positive or negative).

Dynamic typicality: The typicality/symptom severity analysis detailed
above was repeated at each TR using the (non-normalized) window-
derived ISC estimates (Fig. 1B). The resulting time-courses (714 TRs)
were then entered into two fGLS regression models to characterize how
fluctuations in the strength of the typicality/symptom severity relation-
ship are related to the moment-to-moment emotional intensity and
valence of the movie (controlling for brightness, loudness, and baseline
social content).

Age-related differences in the effects of emotional movie content on
ISC and the ISC/symptom severity relationship were evaluated by
dividing the child – adolescent difference in standardized regression
coefficients by the square root of the sum of the coefficients’ squared
standard errors. Two-tailed significance testing of the resulting z scores
was conducted against a normal distribution.

All analyses were conducted in Matlab. Data visualizations were
generated using Connectome Workbench following projection of the
volumetric Shen atlas parcels to the cortical surface (v1.3.1) (Marcus
et al., 2011).

3. Results

3.1. Greater depressive symptom severity is associated with reduced
functional typicality during emotional movie viewing in adolescence

The free viewing of an emotionally evocative Despicable Me clip eli-
cited stereotyped BOLD responses across participants, as measured by
pairwise inter-subject correlation (Fig. 2A). Consistent with recent work
from Guo and colleagues in adults (Guo et al., 2015), greater
self-reported depressive symptom severity, measured with the MFQ-SR,
was associated with participant-specific brain responses that were less
similar to the group average (Fig. 3A). In other words, individuals with
more severe depressive symptoms showed less typical fMRI response
time-courses, a measure we call “functional typicality” (Fig. 1A). This
inverse relationship was preferentially expressed in 6 out of 268 parcels
derived from a whole-brain parcellation (Shen et al., 2013), encom-
passing aspects of left dorsolateral prefrontal cortex (dlPFC; ρ¼�0.27,
P< .01, uncorrected; Fig. 3A; Table S2) and medial temporal lobe
(ρ¼�0.28, P< .01, uncorrected).

The transition from childhood to adolescence is marked by changes in
brain and behavioral responses to emotionally evocative and naturalistic
stimuli (Somerville et al., 2011; Geerligs et al., 2018; Petroni et al.,
2018), including age-dependent shifts in functional synchronization.
Accordingly, analyses that group children and adolescents together could
fail to identify age-dependent associations. To examine how the rela-
tionship between depressive symptoms and naturalistic emotion pro-
cessing changes with development, we divided the full sample into two
age-groups (children: 7–12 years old, n¼ 62; adolescents: 13–21 years
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old, n¼ 50) using a split point informed by prior work (Cohen et al.,
2016) and repeated the functional typicality analysis separately in each
group (Fig. 3B). Findings in the adolescent group mirrored those
observed across the full sample such that depressive symptom severity
was negatively associated with the typicality of movie-evoked functional
time-courses in 8/268 parcels (e.g. left orbitofrontal cortex, ρ¼�0.36,
P< .01, uncorrected, left hippocampus, ρ¼�0.37, P< .01, uncorrected;
Table S14). This relationship was consistent across the brain such that the
average correlation coefficient across all parcels was significantly
stronger than that of a corresponding null distribution (whole-brain
average ρ¼�.15, P< .05; Fig. 3C). We report uncorrected P value in
Figs. 3 and 5 as the presence of a whole-brain effect provided additional
evidence for our results not captured by frequentist statistics. However,
we note that in our parcel-level follow-up analyses, ~2 false positive
relationships can be expected per sub-figure (each visualizing 197
cortical parcels) given our P< .01 threshold. Data tables detailing our
results for all cortical and subcortical/cerebellar parcels (which are not
visualized in Fig. 3�5) that passed this threshold are available in the
Supplementary Materials and contain FDR adjusted P values.

In the child group, on the other hand, no parcel-level correlations
between symptom severity and functional typicality were significant at
P< .01, and the mean correlation coefficient across all parcels was
nominally positive (parcel-level |ρschildren|<0.33, Ps>.01, uncorrected;
whole-brain average ρ¼ 0.005, P¼ .53). The whole-brain relationship
between symptom severity and functional typicality nominally differed
between the child and adolescent groups (whole-brain average
ρchildren�ρadolescents¼ .15, P¼ .08; Supplemental Fig. 2). Importantly,
MFQ score means and distributions as well as responses to 32 of the 33
individual scale items did not significantly differ between the child
(14.7� 9.4 [SD]) and adolescent (13.4� 11.4) groups (mean MFQ
scores: t110¼ 0.65, P¼ .52; Kolmogorov-Smirnov D¼ 0.20, P¼ .18; in-
dividual question |t-statistics|<1.98, Ps>.05; MFQ item 13: “I was
talking more slowly than usual”, t110¼ 2.16, P¼ .03), suggesting that
differences in the functional typicality/symptom severity relationship
cannot be explained solely by disparities in symptom severity or profiles
between the two groups (Fig. 2B).

3.2. Emotional movie content increases functional synchrony

Our analyses revealed a relatively consistent pattern of time-varying
brain activity across participants during movie viewing, replicating
prior work in this domain (Hasson et al., 2004). However, the specific
stimulus features that evoke this inter-subject consistency have yet to be
characterized in developmental populations. To test whether dynamic
emotional movie content drives functional synchronization, we first
estimated fluctuations in ISC using a Tukey sliding window approach
(Fig. 1B; 24-s window, 30 TRs; see Methods for details). This resulted in
functional typicality scores for every participant and every fMRI volume,
which we averaged across individuals to generate a dynamic ISC
time-course for each parcel in our whole-brain atlas. Next, we related
these dynamic ISC time-courses to independent ratings of the emotional
content of the movie using feasible Generalized Least Squares (fGLS)
regression, a technique that addresses the autocorrelation present in the
movie and imaging data (Dayan et al., 2018). We report results that pass
a Benjamini-Hochberg False Discovery Rate (FDR) adjusted threshold of
P< .05 for all fGLS analyses. Although the aim of fGLS is to improve on
OLS regression’s tendency to yield spurious relationships when given
serially correlated inputs, this approach has not been widely applied in
functional MRI research and thus should be considered exploratory.

Consistent with prior work in adults (Nummenmaa et al., 2012),
emotional intensity (the absolute value of the emotional valence ratings)
was positively associated with ISC in the full participant sample (age
7–21) such that brain synchrony across individuals was greater during
more emotionally evocative moments of the movie (Fig. 4). This rela-
tionship was strongest in parcels encompassing aspects of frontolimbic
circuitry implicated in emotion processing, including right anterior



Fig. 3. Functional typicality is related to depres-
sive symptom severity in adolescence. (A)
Spearman partial correlations controlling for age and
sex reveal parcels in which less typical BOLD time-
courses are associated with greater (blue) depressive
symptom severity in the whole sample (bordered
parcels significant at P< .01 uncorrected). (B) The
same analysis shown in (A), repeated for the child and
adolescent groups. (C) The histograms reflect permu-
tation tests demonstrating that the observed mean
functional typicality/symptom severity correlation
coefficient across all parcels was stronger than that
from the corresponding null distribution in the
adolescent, but not child, group (whole-brain aver-
ages: ρchildren¼ 0.005, P¼ .53; ρadolescents¼�0.15,
P< .05).
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insula (β¼ 0.09, P< .05, FDR adjusted, Table S4) and anterior cingulate
cortex (β¼ 0.11, P< .05, FDR adjusted). Conversely, emotional valence
was negatively associated with ISC in several parcels, including bilateral
dlPFC (right hemisphere β¼�0.15, P< .01, FDR adjusted; left hemi-
sphere β¼�0.12, P< .01, FDR adjusted; Table S5) and anterior insula
(right hemisphere β¼�0.15, P< .01, FDR adjusted; left hemisphere
β¼�0.09, P< .05, FDR adjusted).

When independently considering children and adolescents, the dy-
namic ISC findings were similar across both groups, with positive inter-
group spatial correlations for both ISC/emotional intensity (ρ¼ .23,
P< .001) and ISC/emotional valence relationships (ρ¼ 0.14, P< .05; see
Supplementary Fig. 3 for age-group-specific maps). While the topo-
graphic distributions of effects were preserved across the two age-groups,
differences in effect size were apparent (Supplementary Fig. 4) such that
the relationship between increased synchronization and more emotional
content was stronger in children than in adolescents. This age-related
difference was notable in several regions including bilateral mPFC
(right hemisphere z¼�3.63, P< .01, FDR adjusted; left hemisphere
z¼�4.42, P< .001, FDR adjusted) and dlPFC (right hemisphere
z¼�3.67, P< .01, FDR adjusted; left hemisphere z¼�4.46, P< .001,
FDR adjusted). These results suggest that emotional film content syn-
chronized brain responses in both an age-invariant (topography) and an
age-specific (effect size) manner.
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3.3. Emotional movie content weakens the relationship between ISC and
depressive symptom severity in adolescence

Developmental studies have reported information processing biases
in depression, including increased engagement with negative informa-
tion and excessively negative interpretations of emotional events (Klein
et al., 2018; Platt et al., 2017). Our analyses suggest that inter-subject
synchronization is related to the emotional content of the stimulus.
Given that individuals with depression can exhibit emotion-driven
attentional and cognitive biases, the atypical BOLD time-courses we
observed in more depressive individuals may reflect dynamic biases in
attention to, appraisal of, or difficulty disengaging from emotional in-
formation. Consequently, we hypothesized that the emotional movie
content would dynamically influence the relationship between functional
typicality and depressive symptom severity.

Using the dynamic ISC time-courses described above (Fig. 1B), we
first calculated the relationship between functional typicality and
symptom severity at each time point. We next related the resulting time-
courses of correlation coefficients (reflecting the fluctuating strength of
the functional typicality/symptom severity relationship) to the
emotional intensity and emotional valence time-courses using fGLS. The
functional typicality/symptom severity relationship was stronger (more
negative) during less emotional moments of the movie in parcels



Fig. 4. Fluctuations in emotional movie content influence both inter-subject correlations and the relationship between functional typicality and
depressive symptom severity (full sample). Across the full sample, more emotionally charged moments of the movie were, on average, associated with stronger
inter-subject correlations (top left) and weaker functional typicality/depressive symptom severity relationships (bottom left), as determined by fGLS regression (parcel
threshold P< .05, FDR adjusted). BOLD synchronization was higher in several parcels when the clip was more negatively valenced (top middle). Positively valenced
moments of the movie maximized the inverse relationship between functional typicality and symptom severity in more parcels than did negatively valenced moments
(bottom middle). Line plots showing the emotional valence/ISC and emotional valence/functional typicality fGLS regressors in two exemplar parcels are included for
visualization purposes (right).
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encompassing aspects of bilateral anterior insula (right hemisphere
β¼ 0.11, P< .05, FDR adjusted, left hemisphere β¼ 0.10, P< .05, FDR
adjusted; Fig. 4; Table S6), left mPFC (β¼ 0.12, P< .05, FDR adjusted),
and right PCC (β¼ 0.13, P< .01, FDR adjusted). Similar to the dynamic
ISC results, emotional valence was negatively associated with the
strength of the functional typicality/symptom severity relationship in 8/
268 parcels, including left ACC (β¼�0.13, P< .05, FDR adjusted;
Table S7) and dlPFC (β¼�0.18, P< .001, FDR adjusted).

3.4. Adolescents with similar depressive symptom profiles share more similar
brain responses during emotional movie viewing

Our results demonstrate that functional typicality during movie
watching is related to depressive symptom severity in adolescence.
However, depression is a heterogeneous syndrome and the assessment of
gross depressive symptom severity can mask the presence of diverse
symptom profiles. This is especially the case during development, when
substantial variability in emotional, social, and cognitive maturity is
thought to give rise to diverse clinical presentations (Ginicola, 2007).
Recent work suggests that different depressive symptom profiles track
with distinct patterns of brain function (Drysdale et al., 2017; Maglanoc
et al., 2019) and cognitive impairments (Castaneda et al., 2008).
Accordingly, two individuals who share similar levels of depressive
symptom severity might express qualitatively different symptom profiles
and associated brain phenotypes.

To determine whether BOLD time-courses during emotional movie
watching index depressive symptom profiles, we used the L1 (Manhat-
tan) distance to investigate whether pairs of individuals who were more
alike in their item-level responses to the MFQ-SR also exhibited more
similar functional time-courses (Fig. 1C). In the full sample (age 7–21),
this pairwise similarity analysis revealed that participant pairs with more
similar symptom profiles were also more similar in terms of their movie-
induced BOLD activity in a subset of parcels (controlling for similarity in
age, sex, and mean framewise head motion; Fig. 5A). The hypothesized
global effect was present in the adolescent group (whole-brain average
ρ¼�0.05, P< .05; Fig. 5C), where it was preferentially expressed in
right orbitofrontal cortex (ρ¼�0.11, P< .01, uncorrected; Fig. 5B;
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Table S15), right precuneus (ρ¼�0.18, P< .01, uncorrected), and left
angular gyrus (ρ¼�0.13, P< .01, uncorrected). Analogous to our typi-
cality findings, there were no global or parcel-level relationships between
symptom profile and functional similarity in children (whole-
brain average ρchildren¼ 0.004, P¼ .54; parcel-level |ρschildren|<0.18,
Ps>.01, uncorrected), resulting in a nominal difference in whole-
brain effects between the two groups (whole-brain average
ρchildren�ρadolescents¼ 0.06, P¼ .08; Supplemental Fig. 1). Of note, the
relationships between symptom profile similarity and functional time-
course correspondence in adolescents were largely accounted for by
similarity in overall symptom severity. Controlling for the absolute value
of the difference between every two participants’ MFQ scores consider-
ably diminished the whole-brain average of symptom profile/time-
course similarity relationships in the adolescent group (ρ¼�0.03,
P¼ .14). However, the nominal negative direction of this relationship
when controlling for similarity in symptom severity suggests that while
depressive symptom severity and profile similarity are largely over-
lapping, symptom profiles may reflect additional unique aspects of brain
function.

4. Discussion

Children and adolescents with severe depressive symptoms often
describe viewing the world around them through a filter, focusing on
negative information and forming overly pessimistic interpretations of
the thoughts and actions of others (Platt et al., 2017). A fundamental
question facing human neuroscience is how these emotional information
processing biases and the associated expression of depression symptoms
emerge during development. Here we extend research on the brain
mechanisms underlying this phenomenon. First, we demonstrated that
greater depressive symptomatology was associatedwith less typical brain
responses to an emotional clip from the film Despicable Me in adolescents
but not children. Second, we established that the strength of this
brain/behavior relationship scaled with the moment-to-moment affec-
tive content of the movie, such that the depressive symptom severity and
functional typicality association was more prominent when the movie



Fig. 5. BOLD time-course similarity scales with
depressive symptom similarity in adolescents.
Spearman partial correlations controlling for similarity
in age and sex reveal parcels in which pairwise BOLD
time-course similarity is associated with more similar
(blue) depressive symptom profiles in the whole
sample (bordered parcels significant at P< .01, un-
corrected). (B) The same analysis shown in (A),
repeated for the child and adolescent groups. (C) The
histograms reflect permutation tests demonstrating
that the observed mean functional similarity/symptom
profile similarity correlation coefficient across all
parcels was stronger than that from a corresponding
null distribution in the adolescent, but not child, group
(whole-brain averages: ρchildren¼ 0.004, P¼ .54;
ρadolescents¼�0.05, P< .05).
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was less emotional. Finally, we found that adolescents with more similar
depressive symptom profiles shared more similar brain responses to the
movie. Collectively, these results highlight time-varying features of brain
function and emotional information processing that reflect the presence
and severity of depression symptoms across development.

The transition from childhood to adulthood is characterized by
changes in brain function and structure that constrain moment-to-
moment responses to affective information (Casey et al., 2008, 2019;
Hutchison and Morton, 2015). In both children and adolescents,
depression is associated with altered brain responses to static emotional
images (Lepp€anen, 2006; Somerville et al., 2011; Kerestes et al., 2014). In
adults, patients with melancholic depression exhibit reduced group-level
inter-subject functional synchronization during film viewing (Guo et al.,
2015). Building upon this literature, our ISC typicality and similarity
analyses revealed that adolescents with more severe depressive symp-
toms exhibited less typical brain-wide responses during emotional movie
viewing, and that these responses were more similar in pairs of in-
dividuals who were more alike in their symptom profiles. These effects
were evident in several regions commonly implicated in affective inte-
gration and regulation (e.g., orbitofrontal cortex, precuneus, dlPFC)
(Lindquist et al., 2012). Prior work suggests that specific changes in
amygdala–mPFC functional connectivity during emotional face viewing
9

underlie shifts in psychiatric symptoms during the transition to adult-
hood (Gee et al., 2013). The distributed relationships between patterns of
brain function and depression observed here provides novel insight into
the neurobiological basis of affective processing in adolescents and
suggests an intriguing model for the more general development of
emotion-relevant regulatory systems throughout the brain.

Although much of the current literature treats emotion processing as
time-invariant by focusing on average responses to static stimuli, the
brain possesses a dynamic organizational structure that adjusts in
response to explicit task demands. Here, we establish the importance of
dynamic approaches to the study of emotion processing with an explor-
atory analysis demonstrating that the observed relationship between
functional typicality and depressive symptom severity was sensitive to
the emotional content of the movie. More specifically, the inverse func-
tional typicality/symptom severity relationship was weaker when the
movie was more emotionally charged. This effect was evident in several
higher-order brain regions, including left mPFC and right PCC. Recent
studies have found that functional similarity in vmPFC and PCC/post-
eromedial cortex increases when individuals share similar in-
terpretations of an event (Yeshurun et al., 2017; Nguyen et al., 2019).
Based on this literature, participants in our study with greater depressive
symptoms may have formed more similar interpretations of the movie
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when it was more emotional, leading to relative population-level in-
creases in ISC, thereby weakening the inverse functional typicality/-
symptom severity relationship. Similarly, these participants may have
engaged in more mood congruent stimulus-independent cognition
and/or idiosyncratic interpretation during less emotional (and perhaps
less engaging) moments, which could account for the inverse association
between functional typicality and symptom severity observed across the
clip. Although speculative, this candidate explanation aligns with inter-
pretation bias, a phenomenon in which depressed individuals adopt
rigid, overly pessimistic responses to emotional (and especially nega-
tively valenced) information (Gotlib and Joormann, 2010; Platt et al.,
2017; Everaert et al., 2017, 2018). This set of findings deserves close
consideration in future studies given the preliminary nature of our fGLS
analyses as well as the fact that interpretation bias represents just one
possible explanation for these observed effects. For example, it may be
the case that brain function and symptom severity were less related
during emotionally negative compared to positive moments of the clip
because more depressed individuals may preferentially attend to nega-
tive stimuli, regardless of how those stimuli are interpreted.

Psychiatric research has increasingly focused on a dimensional
perspective of illness that incorporates transdiagnostic conceptions of
neurobiology and behavior (Insel et al., 2010). This approach is partic-
ularly relevant to the study of major depressive disorder, a heterogeneous
syndrome with hundreds of possible clinical presentations (Fried, 2017).
Although the relationships between symptom profile and BOLD
time-course similarity were attenuated by controlling for overall symp-
tom severity, the fact that the corresponding whole-brain relationship
still trended in the expected direction suggests that an individual’s brain
responses to naturalistic stimuli may be sensitive to their specific pattern
of symptoms. Furthermore, the influence of symptom profile similarity
on brain synchrony might be more pronounced in samples enriched for
depression. Future work focusing on clinically depressed participants
may be necessary to evaluate whether fMRI responses to naturalistic
stimuli could contribute to symptom profile biotypes, which will be
instrumental in developing new taxonomies and treatments of depression
(Williams, 2016, 2017).

Understanding the neurobiological signatures of depressive symptom
profiles in children and adolescents is especially crucial, as both the
prevalence and consequences of depression are magnified during the
transition to adulthood (Platt et al., 2017). Here, the presence of re-
lationships between time-course typicality/similarity and depressive
symptoms in adolescents and not children may reflect effects of symptom
duration and/or developmental stage. More specifically, it is possible
that inter-subject synchrony scales with symptomatology once in-
dividuals have spent a considerable amount of time living with depres-
sive symptoms, irrespective of age. It is impossible to confirm or counter
this explanation without being able to control for clinical features such as
age of onset and time since last episode. However, the recent discovery of
similar adolescent-emergent relationships between neurogenetic/func-
tional profiles and psychiatric symptomatology (Kaufmann et al., 2017;
Gee et al., 2016) suggests that our present findings likely relate to
developmental stage. One such relationship was identified by Kaufmann
and colleagues, who reported that while adolescents with increased
overall psychiatric symptom severity exhibited decreased resting-state
connectome distinctiveness compared to healthy individuals, no signifi-
cant relationship between these variables was found in children (Kauf-
mann et al., 2017). Although the association between functional brain
typicality and symptom severity was negative in our analyses, we note
that functional typicality has been shown to scale positively with some
clinically relevant features (trait paranoia (Finn et al., 2018)) and
negatively with others (depression (Guo et al., 2015) and autism (Salmi
et al., 2013) symptom severity). Therefore, while functional typicality
appears to serve as an index of psychopathology that emerges during
adolescence, future work should clarify how these relationships may
differ across psychiatric diagnoses and analytic approaches.

Several limitations should be considered when evaluating the current
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findings. First, individual differences in ISC vary significantly with the
specific characteristics of the stimulus and population being studied
(Hasson et al., 2008; Vanderwal et al., 2015). This is particularly relevant
to the study of emotional processing, as films with different affective
structures might reveal distinct relationships between depressive symp-
toms and brain function. Ongoing deep-phenotyping efforts involving a
diverse array of stimuli and behavioral assays may be helpful in illumi-
nating general relationships between affective brain response and
behavior (Holmes and Patrick, 2018). Second, the emotional content of
the movie was rated by twenty independent adults (mean age¼ 25 years
old, s.d.¼ 3.74 years) whose affective experiences while viewing the
movie might have qualitatively differed from those of the participants.
Although this would likely only hinder our ability to relate emotional
film content to brain function, it is difficult to predict exactly how this
might influence our analyses. Finally, the design of this study prevented
us from identifying specific cognitive and affective processes associated
with the ISC/depressive symptom relationships and how these relation-
ships might change within individuals across development. These find-
ings motivate longitudinal research to examine how age-related changes
in individuals’ brain responses to naturalistic emotional stimuli relate to
the emergence and maintenance of depressive symptoms. Such efforts
hold considerable promise in advancing both our ability to predict clin-
ical outcomes and our understanding of neurobiological mechanisms
underlying psychiatric illness (Rosenberg et al., 2018; Casey et al., 2018).

5. Conclusion

How the presence and severity of psychiatric symptoms color
emotional experiences across development is a central and challenging
question in affective neuroscience. Our data suggest that atypical brain
responses to an emotional movie may constitute functional markers of
depression that emerge in adolescence and serve as signatures of item-
level depressive symptom profiles. The sensitivity of the observed func-
tional typicality/symptom severity relationship to the dynamic affective
content of the movie is consistent with the proposed core role of affective
information-processing biases in depression (Gotlib and Joormann,
2010). Furthermore, the preferential expression of these effects in fron-
tolimbic areas aligns with an extensive literature implicating these re-
gions in the processing of static emotional images (Lepp€anen, 2006;
Lindquist et al., 2012; Fitzgerald et al., 2008). However, the presence of
whole-brain relationships suggests that naturalistic stimuli may afford
the opportunity to characterize qualitatively different patterns of activity
in response to emotional content. Due to the method’s ecological validity
(Hasson et al., 2008), ability to provide high quality data (Vanderwal
et al., 2015, 2018), and support of sophisticated analytic techniques
(Vanderwal et al., 2018), we join a growing number of researchers in
recommending that naturalistic paradigms be used to study the brain
bases of psychiatric disorders. To conclude, our discovery of a develop-
mental change in the relationships linking brain function and depressive
symptoms encourages further development of naturalistic and biologi-
cally informed methods for the early detection and prevention of psy-
chiatric illness across development.
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