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Highlights
Psychiatric diagnoses do not cleanly
map onto specific biological mecha-
nisms or clinical outcomes, limiting
progress towards uncovering their
biology and developing more effective
treatments.

Reliance on classical case–control
comparisons of group means is a major
reason for limited progress in the field.
Despite decadesof research,we lack objective diagnostic or prognostic biomarkers
of mental health problems. A key reason for this limited progress is a reliance on the
traditional case–control paradigm, which assumes that each disorder has a single
cause that can be uncovered by comparing average phenotypic values of patient
and control samples. Here, we discuss the problematic assumptions on which
this paradigm is based and highlight recent efforts that seek to characterize, rather
than minimize, the inherent clinical and biological variability that underpins psychi-
atric populations. Embracing such variability is necessary to understand patho-
physiological mechanisms and develop more targeted and effective treatments.
Analytic methods for characterizing bio-
logical and behavioral variability across
individuals are revealing the substantial
heterogeneity that characterizes psychi-
atric illness.
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The logjam in biological psychiatry

The principal requisite in the knowledge of mental diseases is an accurate definition of the sep-
arate disease processes. In the solution of this problem one must have, on the one hand,
knowledge of the physical changes in the cerebral cortex, and on the other of the mental
symptoms associated with them.

[Kraepelin, 1907/1908]

Emil Kraepelin, widely recognized as the founding father of modern psychiatry, believed that ac-
curate diagnoses must ideally be predicated on an understanding of the brain changes that ac-
company psychopathological symptoms. He investigated postmortem specimens from
patients he had diagnosed with dementia praecox (see Glossary) in the hope that he would
have the same success as his colleague, Alois Alzheimer, in identifying an obvious pathological
marker of disease. Kraepelin’s search was ultimately less fruitful, and he settled on a diagnostic
classification system based on clinical observations of symptoms. Over a century later, we
have still not realized Kraepelin’s aspirations, with descriptive psychiatric approaches, codified
in nosologies such as the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) [1]
and the International Classification of Diseases (ICD-11) [2], remaining as the dominant para-
digms for clinical diagnosis in psychiatry.

The field is trapped in this morass despite decades of research, thousands of papers, and billions
of dollars spent to identify meaningful biological markers of mental illness. Thomas Insel summa-
rized his tenure as Director of the US National Institutes of Mental Health (NIMH) by stating:

I spent 13 years at NIMH really pushing on the neuroscience and genetics of mental disorders,
… while I think I succeeded at getting lots of really cool papers published by cool scientists at
fairly large costs––I think $20 billion––I don’t think we moved the needle in reducing suicide,
reducing hospitalizations, improving recovery for the tens of millions of people who have
mental illnessi.
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Glossary
Biotypes: subtypes of patients with a
common diagnosis showing distinct
biological phenotypes.
Construct validity: the
correspondence between a psychological
measure and the psychological attribute
or behavior it was designed to measure.
Default mode network: the set of
brain regions, including medial prefrontal
cortex, posterior cingulate cortex, and
lateral parietal and temporal cortices,
that show strong functional coupling at
rest and decreased activity during tasks
requiring attention to external stimuli
along with increased activation during
introspective processing.
Dementia praecox: a historical term
first proposed by Emil Kraepelin,
meaning dementia with early onset, that
is the precursor of what we now
describe as schizophrenia.
Diaschisis: derived from Greek Dia ‘in
half’ or ‘across’ and schizien ‘to split’.
Describes the depressed function that
can arise in brain regions remote from
the area of an initial insult.
Equifinality: a variety of starting points
leads to the same diagnosis through
different processes.
Idiopathic: a disease or disorder of
unknown cause.
Multifinality: similar starting points lead
to different diagnoses via multiple
pathways.
Pleiotropy: a single brain region
may contribute to multiple
symptoms/syndromes.
Reliability: the consistency of
measurement across items, scales,
occasions, or raters. It is inversely related
to measurement error and imposes an
upper limit on the observed effect size
that can be detected between psychiatric
and neurobiological phenotypes.
Spectra: Higher-order dimensions, in
most cases subsuming one or more
related subfactors, that putatively
represent liabilities to a broader range of
psychopathology, such as the
internalizing spectrum, which accounts
for covariance between the subfactors
of fear and distress.
Subfactors: Constructs combining
closely related dimensional syndromes;
for instance, the subfactor fear accounts
for covariance between social anxiety
and phobias.
Superspectra: The highest and
broadest level of the hierarchical
dimensional structure; for instance, a
general psychopathology factor is
Here, we consider potential reasons for this limited progress, with the hope of identifying new
strategies for breaking through the logjam. We focus principally on efforts to uncover the neural
mechanisms of psychiatric illness, particularly as revealed through noninvasive neuroimaging,
which is the most popular approach for probing brain structure and function in living participants.
We draw on examples of structural neuroimaging research, but in most cases our arguments also
apply to other imaging and nonimaging contexts. We propose that the current case–control par-
adigm (Figure 1A) pervadingmuch of the literature is ill-equipped to capture the inherent biological
and clinical variability of psychiatric illness, necessarily limiting our ability to uncover associated
neural mechanisms. In particular, we focus on four core, yet problematic, assumptions that under-
pin the application of the conventional paradigm and which limit the progress of the field more gen-
erally: namely (i) the group mean is representative of individual patients; (ii) brain regions operate as
isolated units; (iii) there is a one-to-one mapping between a given brain region (or network) and a
particular psychiatric illness; and (iv) diagnoses are the appropriate level of phenotypic resolution
for uncovering pathophysiological mechanisms. We outline the limitations of these assumptions
and approaches to circumvent them. We conclude by discussing future directions for embracing
variability in the ongoing search for neural mechanisms of psychiatric illness.

Problematic assumption 1: the groupmean is representative of individuals within
that group
The classical case–control experimental paradigm has been a fundamental cornerstone of
biological psychiatric research over the past century (Box 1). In this paradigm, an investigator re-
cruits individuals diagnosedwith the psychiatric illness of interest alongside an appropriate 'healthy'
control population without a history of psychiatric illness or treatment. Neurobiological phenotypes
of interest (e.g., brain volume) are then acquired in each individual, and the averages of each group
are compared using some form of statistical inference, such as a t test or related quantity.

This paradigm, and the classical inferential procedures on which it is based, largely relies on
group-level summaries of the central tendency of brain measures. For instance, most studies in
biological psychiatry compare group mean differences between cases and controls using a gen-
eral linear model or related statistic. This approachwill only be useful if themean offers a represen-
tative summary of that group, and the mean will only be representative if the groups define
homogenous classes of individuals.

In studies of psychiatric populations, numerous methodological factors and sample characteris-
tics can conspire to increase the interindividual heterogeneity of a group, decrease the represen-
tativeness of the group mean, and lead to inconsistent findings across studies (Box 2). However,
even if these factors could be perfectly controlled, a more fundamental problem emerges from the
fact that diagnostic groups are defined by checklists of self-reported symptoms and clinically ob-
served signs derived from expert consensus rather than an empirically grounded understanding
of how clinical phenotypes are tied to biological mechanisms.

The categories that have resulted from such diagnostic procedures yield an extreme diversity of
symptom profiles. For instance, there are 636 120 possible symptom combinations that meet
criteria for a diagnosis of post-traumatic stress disorder [3], 116 220 possible combinations for
attention deficit hyperactivity disorder (ADHD) [4], and 16 400 possible combinations for depres-
sion [5]. One empirical study of depression found nearly 50% of people express a symptom pro-
file that is unique to the individual [5]. As such, people can receive the same diagnosis without
sharing common symptoms. This interindividual variability is compounded by variations in the
age of onset and the frequency, duration, timing, severity, and dynamic transitions between
symptoms.
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Figure 1. First two problematic assumptions in the search for biological mechanisms of psychiatric illness.
Assumption 1: The group mean is representative of most individuals within a group. (A) In the case–control paradigm,
cases are enrolled based on a single, specific clinical diagnosis and are compared with controls using some form of
statistical inference, such as a t test or related statistic, typically at the level of individual brain loci. (B) Normative modeling
moves beyond group means to enable statistical inferences at the level of individuals. Normative modeling involves training
a model to learn normative expectations for a given brain phenotype, given an individual’s age, sex, or other relevant
characteristics in a reference cohort (e.g., the controls). The model predictions can then be used to define a normative
range of variation, against which new observations can be compared. The model is then validated out-of-sample using
crossvalidation and applied to a new target cohort (e.g., the cases). When the model is fitted at many brain regions, it is
possible to obtain a deviation map for each individual in the target cohort that identifies regions associated with unusually
small or large phenotypic values. From here, a threshold can be applied (e.g., z < -2.6) to identify extreme deviations.
Figure 1B inspired from [15]. Assumption 2: Brain regions operate as isolated units. Focusing on each area in isolation, with-
out consideration of (C) the broader network within which they are embedded (the connectome) yields an incomplete picture
of the pathophysiology, since any local pathology can be accompanied by a broader set of (D) adaptive (compensation,
neural reserve, degeneracy) and maladaptive (transneuronal degeneration, dedifferentiation, diaschisis) network-level
responses that will influence the clinical phenotype. Transneuronal degeneration occurs when there is structural degeneration
of areas connected to affected site. Dedifferentiation occurs when nonspecific brain regions are recruited following the
dysfunction of the affected regions. Diaschisis occurs when the affected site depresses the function of connected regions.
Compensation occurs when unaffected regions increase their function to preserve behavior. Neural reserve occurs when
activity in unaffected regions remains unchanged and behavior is intact. Degeneracy occurs when a second network can
support the behavior that is normally mediated by the affected regions, without any substantial changes in function (see
[22] for extended discussion). Figure 1D inspired from [22]. (E) Lesion network mapping offers a framework for exploring
some of these network-level processes by mapping the areas coupled to putative sites of focal dysfunction in individual
patients.
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proposed to explain covariance
between different spectra.
Syndromes: clusters of conceptually
and empirically related symptom
components and maladaptive traits that
are thought to co-occur in someclinically
meaningful or statistical way; for
instance, depression combines appetite
loss and insomnia.
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Box 1. The case–control paradigm and the search for a causal brain region

Early investigators such as Kraepelin [104] and Wernicke [105] theorized that psychiatric symptoms could emerge from
disruptions of brain function, but methods to probe the biology of mental illness took some time to develop and proliferate,
evolving from the rudimentary postmortem investigations of Kraepelin and others to family and twin studies in the early
20th century demonstrating a heritable basis for schizophrenia and other illnesses [106]. This work was followed by the
discovery of antipsychotic and antidepressant agents in the 1950s [107,108], and the demonstration of structural and
functional brain changes in living patients in the 1970s [109,110]. The advent of MRI in the 1980s, along with ongoing
improvements in histological approaches, subsequently triggered an explosion of research into the biological basis of
psychiatric disorders.

For much of this history, a major emphasis was placed on identifying the focal, causal brain lesions triggering the onset of
each disorder, under the assumption that there is a one-to-one mapping between brain regions and behaviors. Different
investigators thus variously emphasized the role of the dorsolateral prefrontal cortex [111], basal ganglia [112], thalamus
[113], and temporal lobe [114] in schizophrenia; the hippocampus [115], amygdala [116], and subgenual prefrontal cortex
[117] in major depression; and basal ganglia [118] and orbitofrontal cortex [119] in OCD, to name just a few examples.

In line with a growing appreciation that brain regions do not operate as isolated units, and the development of techniques
for mapping large-scale brain connectivity [120,121], the focus of the field then shifted from single, focal lesions tomapping
dysfunction of large-scale brain circuits. Thus, frontolimbic systems have been emphasized in MDD [122], the default
mode network in ASD [123], dorsal and ventral frontostriatal systems in schizophrenia [124] and OCD [125], respectively.
This work has advanced our understanding of pathophysiological processes [22] and is being leveraged to develop
improved stimulation-based therapies targeting dysfunctional circuits [44,99], but progress has nonetheless been slow.
We still lack clinically useful biological markers of diagnosis, prognosis, or treatment outcome, and neuroimaging has thus
far not informed the development of mechanistically novel pharmacological therapies. The combination of neuroimaging
withmore causal perturbations (such as lesions and brain stimulation techniques [42,44]), in addition to refined clinical phe-
notyping (Box 4), will be required to break this impasse.

Trends in Cognitive Sciences
The problems posed by intradiagnostic heterogeneity are exacerbated by a lack of diagnostic
specificity for individual symptoms, leading to high rates of comorbidity. Indeed, comorbidity is
the rule rather than the exception, with ~50% of people diagnosed with one condition also meet-
ing criteria for another, 50% of people with two diagnoses meeting criteria for a third, and so on
[6]. While the high rates of comorbidity may arise from the coexistence of distinct diseases, a
more probable cause is that psychiatric disorders are not discrete entities and, as such, symp-
toms transcend traditional diagnostic boundaries. For instance, 37% of symptoms within the
DSM-5 are not specific to a single illness, and together make up 72% of the symptoms listed in
all of the diagnostic criteria, demonstrating a marked lack of symptom specificity [7]. Moreover,
when comparing symptom profiles as opposed to individual symptoms, no individual disorder
is separable from a randomly selected group of individuals with nominally distinct diagnoses
[8]. While this could be driven in part by the extreme heterogeneity within diagnostic groups, it
also provides further evidence of the limited specificity and validity of traditional diagnostic bound-
aries in psychiatry.

These limitations havemotivated alternative approaches to characterizing psychiatric phenotypes
that do not rely on categorical diagnoses, such as the Research Domain Criteria (RDoC) [9]
and Hierarchical Taxonomy of Psychopathology (HiTOP) [10]. These approaches seek to define
homogenous groups of individuals through various strategies, such as the use of predefined con-
structs determined by expert consensus (RDoC) or data-driven quantitative clustering analyses of
biological and other measures (HiTOP) to identify putative subtypes or even biotypes of illness.
However, the results obtained with such approaches can be notoriously susceptible to investiga-
tor choices in the analysis pipeline, as well as difficulties in validating the clusters and in determin-
ing whether they are really separable. The application of such approaches to psychiatry has
therefore met with variable success [11].

An alternative approach is to move away from groupmean comparisons and directly characterize
the variability within clinical populations. To this end, normative modeling [12–15] (Figure 1B)
88 Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1



Box 2. Potential reasons for inconsistent findings

The lack of consistency and specificity between studies can, at least in part, be attributed to various sources of between-
sample/study heterogeneity, which can collectively be referred to as 'site effects'. These differences can vary systemati-
cally between patients and controls and between studies. Below, we have separated site effects in terms of methodolog-
ical considerations and sample characteristics. This is not an exhaustive list and these factors are not mutually exclusive.

Methodological characteristics contributing to inconsistencies between studies include differences in study design, data
acquisition, and data processing. For instance, study design characteristics and data acquisition factors such as
prescanning instructions, scanner hardware, imaging parameters and protocol, head motion, and physiological noise all
affect MRI signal and anatomical measures. These issues are exacerbated when there are systematic differences between
samples within a study. For example, patient populations typically exhibit increased headmotion in the scanner compared
with controls, making it difficult to disentangle the degree to which differences between the groups are due to the under-
lying neurobiology of a disorder itself or due to motion artifacts. Inconsistencies between data processing and analysis
choices have also been reported to influence MRI and anatomical measures. These inconsistencies include, but are not
limited to, differences in computer operating system, analysis software packages, specific software versions, data analysis
workflows, and parcellation strategies.

Aside from methodological choices, it is well established that sample characteristics such as age, sex, and brain size can
confound psychiatric neuroimaging. Other important factors which have been shown to influence MRI signals include
demographic variables, such as education and socioeconomic status, lifestyle and behavioral factors, including smoking,
substance use and exposure, caffeine, exercise, diet, and hydration, and biological factors including body weight, meta-
bolic variations, time of day, hormonal fluctuations, circadian rhythms and timing. Again, these factors can vary not only
between different studies, but they can also vary systematically between patients and controls (e.g., adiposity in schizo-
phrenia). There are also clinical characteristics specific to the patients enrolled in the study including medication use and
history, symptom expression including presentation, frequency, direction, severity, and age of onset, mental and physical
comorbidities, and current mental state.

All of these factors are compounded by the traditionally small sample sizes studied in biological psychiatry research, which
can lead to considerable variability of effect size estimates from study to study and, in some cases, such as in brain-wide
association studies (BWASs), require samples in the order of thousands of people to obtain reliable results [126]. Effect
sizes in psychiatric disease are generally larger than those in BWAS and can thus be reliably detected with sample sizes
numbering hundreds rather than thousands [127], but further work establishing the minimum required effect sizes for
different neural and psychiatric phenotypes is required. Improved definitions of clinical phenotypes provide a cost-effective
means for mitigating some of this variability and improving effect sizes (Box 4) [93].

Trends in Cognitive Sciences
offers a promising and statistically rigorous framework for performing inferences at the level of
individuals, affording new opportunities for unraveling clinical and biological heterogeneity. In
contrast to case–control paradigms, this approach does not assume that individuals share similar
patterns of pathology, nor does it assume that the clinical cohort can be neatly partitioned into
homogeneous clusters. Instead, normative modeling involves training a statistical model to esti-
mate a normative distribution of a given phenotype, such as brain volume, based on relevant
demographic characteristics, such as age and sex. One can then measure the phenotype in
a new individual and estimate the extent to which the measured value deviates from model pre-
dictions (termed deviations). Extreme deviations (i.e., unusually large or small phenotypic values
relative to normative expectations) are theorized to be most likely associated with the presence
of pathology as they are the most abnormal [15].

The application of normativemodels to diverse psychiatric groups has consistently shown that group
means derived from case–control group mean comparisons are not representative of most indi-
vidual patients. Specifically, while individuals with a psychiatric diagnosis typically show a higher
frequency of deviations in measures of brain structure and function compared to controls, the
location of these deviations varies considerably, regardless of whether robust group-average
case–control differences are present. In most cases, less than 10–20% of individuals with a
given diagnosis exhibit extreme deviations in the same brain locus [16–18]. For instance, despite
widespread reductions of gray matter volume in group-level analyses of schizophrenia, the loca-
tions of person-specific extreme deviations from normative estimates fall within the same area in
Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1 89
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less than 10% of patients [16,17]. In autism spectrum disorder (ASD), where few case–control
cortical thickness differences are reported, patients show highly individualized patterns not only
with respect to the locations of brain deviations, but also with respect to the direction of the
deviation (i.e., increases or decreases relative to normative estimates), with the maximum overlap
never exceeding 20% [18]. Such heterogeneous bidirectional effects will be masked by group-
averaged case–control comparisons.

The normative modeling framework has been used to probe individual-level neurobiological var-
iability across diverse clinical cohorts including ADHD [16], ASD [16,19], bipolar disorder [16,17],
depression [16,20], obsessive compulsive disorder (OCD) [16,21], and schizophrenia [16,17].
Overwhelmingly, these findings highlight that case–control group-mean differences (or lack
thereof) are not representative of most individuals. Continued reliance on group mean compari-
sons is thus expected to result in a litany of inconsistent findings that may only be characteristic
of small subgroups of individuals. We note, however, that the consistency of individual-level infer-
ences drawn from normative modeling studies themselves, particularly with respect to variations
in the normative population used as the reference class and/or various other analysis choices, has
not been widely explored. Establishing the reliability and robustness of the person-specific infer-
ences drawn from normative models is an important priority of the field.

Problematic assumption 2: brain regions operate as isolated units
A second core assumption of classical inferential procedures is that differences revealed by group
mean comparisons represent the core pathophysiological markers of interest. These differences
are typically identified by mass univariate analyses comparing mean differences in some neurobi-
ological phenotypic value (e.g., brain volume) acrossmany points in the brain.While these regions
are likely to play a role in the expression of psychiatric illness for at least a subset of individuals,
focusing on each area in isolation yields an incomplete picture of the pathophysiological process
[22,23]. Brain regions do not operate as isolated units but instead form part of an interconnected
network, often called the connectome [24,25] (Figure 1C). The connectivity of this network will
necessarily shape the spatiotemporal evolution of any dynamical and/or pathophysiological pro-
cesses that unfold in the brain [22,26] (Figure 1D). This principle is demonstrated by studies
showing that gray matter volume changes in psychiatric disorders are associated with the micro-
structure of adject white matter [27], that they occur in spatial patterns that are constrained by the
structural, functional, and genetic architecture of the connectome [28–30], and that their spatial
pattern can be predicted by simple models of brain network properties across different stages
of illness and diagnostic categories [31–33].

These studies underscore the need to consider the broader network context of any putative path-
ophysiological marker. This need was well-known to early writers such as von Monakow, who
coined the term diaschisis to describe how dysfunction in one area can impact the function of
other, sometimes physically distant areas [34]. The explanatory power of this concept has re-
cently been demonstrated in lesion network mapping (Figure 1E) studies of overt brain lesions
[35,36] that cause neurological or psychiatric symptoms. Such studies have consistently shown
that the anatomical location of lesions thought to cause a particular syndrome can be highly het-
erogeneous across individuals, but that these lesioned sites are often structurally or functionally
coupled to common systems. These observations indicate that deafferentation of the remote
sites, rather than dysfunction of the lesioned area itself, is likely a causal factor shaping the clinical
presentation. For instance, only 13% of neurological cases with psychotic symptoms show spatial
overlap in the site of the primary lesion, but 84% of the lesioned areas are functionally coupled to the
posterior hippocampus [37]. This result aligns with mathematical models implicating the hippocam-
pus as a putative epicentre of graymatter volume change in psychiatric patients with psychosis [31].
90 Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1
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The basic logic underlying lesion network mapping has been adapted for the investigation of
idiopathic psychiatric disorders. In the absence of overt brain lesions, techniques for defining
putative foci of pathology using quantitative criteria have been developed. One approach,
termed coordinate network mapping, maps heterogeneous neuroimaging coordinates
derived from psychiatric meta-analyses onto brain circuits [38]. This method has been applied
to a range of disorders, including depression [39] and addiction [40]. One transdiagnostic
meta-analysis of gray matter coordinates obtained across six psychiatric disorders from 193
voxel-based morphometry studies found that only 35% of studies contributed to any one
anatomically focal cluster. However, 85% of studies were functionally connected to the
same network of brain regions, including the insula, anterior cingulate, posterior cingulate,
frontal pole, posterior parietal cortex, lateral occipital cortex, brainstem, and cerebellum [41].
In many circumstances, the brain circuitry revealed by this approach aligns with brain circuits
implicated by lesion network mapping studies of neurological cases showing psychiatric
symptoms as well as brain stimulation targets with therapeutic efficacy, providing an exciting
path towards closing the causality gap in the search for biological mechanisms of psychiatric
illness [42].

However, while meta-analysis coordinate network mapping captures heterogeneity between
studies, it cannot capture neural heterogeneity at an individual level (problematic assumption
1). An alternative framework combines normative modeling with elements of lesion network
mapping to characterize the structural and functional network context of individual-specific
neuroanatomical deviations [16,21]. Echoing neurological lesion network studies, this work in-
dicates that neuroanatomically heterogeneous deviations in psychiatric disorders aggregate
within coupled neural systems, both within and between diagnostic categories. For instance,
we characterized disorder-specific gray matter volume heterogeneity across multiple spatial
resolution scales in six psychiatric disorders: ADHD, ASD, bipolar disorder, depression,
OCD, and schizophrenia. Although gray matter deviations were common in patients, no
more than 7% of individuals within a given clinical group showed deviations in the same brain
region, supporting prior reports indicating high interindividual heterogeneity. Consistency at
the network level was much higher, reaching 50% in some cases. Notably, most of this overlap
was attributable to total deviation burden, with the level of network overlap rarely exceeding the
expectations of a random spatial distribution of the same number of deviations. This finding
suggests that specific neural circuits may be commonly implicated across individuals with
the same disorder simply because these areas are more vulnerable to random perturbations.
Evidence for selective, disorder-specific targeting of neural systems beyond such expectations
was only observed in a few cases, such as the dorsolateral prefrontal cortex in depression and
bipolar disorder, the dorsal attention network and medial temporal areas in ADHD, and the sa-
lience/ventral attention system in schizophrenia [16]. Collectively, these findings suggest that
heterogeneity at the level of regional deviations may be related to intradiagnostic clinical hetero-
geneity, whereas the aggregation of these regional deviations within common circuits and net-
works may account for clinical similarities both within and between diagnoses. The findings
also suggest that the targeting of different neural systems by distinct disorders may be less
specific than previously thought.

These studies demonstrate the need to consider the broader network context of any putative
pathophysiological marker [22]. However, these network mapping approaches cannot directly
tease apart the cause of pathology from a secondary effect, such as a compensatory neural
response or contribution from some comorbid pathology [43]. The use of complimentary
evidence drawn from both lesion and brain stimulation research [42,44], or genetics and
neuroimaging [45], can be used to more precisely pinpoint aspects of brain dysfunction with
Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1 91
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causal influences on psychiatric phenotypes. Future work will also profit from accounting for
interindividual variability in network topography, which can influence case–control comparisons
of brain activity [46] and may offer a novel set of potential illness biomarkers [47,48].

Problematic assumption 3: there is a one-to-one mapping between disorder and
pathophysiological mechanism
A third core assumption of conventional case–control paradigms is that a mean difference in
some biological measure can reveal a pathophysiological phenotype that applies to most (if not
all) individuals within the patient group. In other words, it assumes a one-to-one mapping
between dysfunction in a specific brain region (or network) and a given illness (Figure 2A). As
noted in the preceding text, this assumption is contingent on the homogeneity of the patient
group itself. However, even if we assume this (unlikely) best-case scenario, strict reliance on
group-mean comparisons remains problematic because it ignores mechanistic heterogeneity
and pleiotropy, two concepts that have been studied extensively in genetics.

Heterogeneity occurs whenmultiple genetic variants contribute to the same phenotype, yielding a
many-to-onemapping (also referred to as polygenicity) (Figure 2B). Conversely, pleiotropy occurs
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Second two problematic assumptions in the search for biological mechanisms of psychiatric illness
Assumption 3: There is a one-to-one between brain dysfunction and a given diagnosis. (A) A one-to-one mapping assumes
that dysfunction of a specific brain region maps onto a specific disorder. Many other scenarios are possible including (B) a
many-to-one mapping (i.e., heterogeneity), in which multiple brain regions contribute to the same disorder; (C) a one-to-
many mapping (i.e., pleiotropy), in which a single brain region is involved in multiple disorders; and (D) a many-to-many
mapping, in which multiple brain regions are involved in multiple disorders. Assumption 4: Diagnostic categories are the
appropriate phenotypic resolution. Both biological and behavioral phenotypes can be described at different resolution
scales, from genes and molecules through to higher-order behavioral dimensions such as 'p-factor'. As such, brain and
behavior can be related at different levels of resolution (E). Orange shows the levels typically considered in neuroimaging
but there are possible links between every pair of levels.

92 Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1
.

,

move_f0010
Image of &INS id=


Trends in Cognitive Sciences
when a single variant contributes to multiple phenotypes, yielding a one-to-many mapping
(Figure 2c). In psychology, these two concepts are respectively referred to as equifinality
(different starting points leading to the same diagnosis) and multifinality (similar starting points
leading to different diagnoses).

In neurobiological investigations, mechanistic heterogeneity means that dysfunction across
multiple brain regions or systems may contribute to a given diagnosis. For example, schizo-
phrenia is widely regarded as a disorder of abnormal connectivity between spatially distributed
interconnected neural systems [49], with widespread structural and functional cortical
and subcortical alterations [50]. Likewise, ASD is associated with widespread cortical and
subcortical morphometric [51] and functional connectivity differences [52]. The Enhancing
NeuroImaging Genetics throughMeta-Analysis (ENIGMA) consortium has aggregated neuroimag-
ing data across thousands of individuals and found widespread neuroanatomical disruptions in
many psychiatric disorders, including depression [53], bipolar disorder [54] , and schizophrenia
[55].

Neurobiological pleiotropy means that a single brain region may contribute to multiple symp-
toms/syndromes. For example, consistent reports of reduced prefrontal cortex (PFC) volume
across diverse disorders, including ADHD [56], depression [57], OCD [58], and schizophrenia
[59], are consistent with a one-to-many mapping. When studies adopt cross-disorder and
transdiagnostic approaches to directly tease apart disorder-specific from disorder-general
effects, general effects across diagnostic categories are frequently reported. A meta-analysis
of voxel-based morphometry case–control studies across six psychiatric diagnoses (addiction,
anxiety, bipolar disorder, depression, OCD, and schizophrenia) reported bilateral, disorder-
general, gray matter volume reductions in the anterior insula and in the dorsal anterior cingulate
cortex [60]. Patient-specific gray matter volume deviations identified through normative modeling
provide converging evidence within this network across different diagnoses [16]. Transdiagnostic
functional dysconnectivity of frontoparietal networks has also been established in depression, bi-
polar, schizoaffective disorder, and schizophrenia [61]. Such findingsmay either reflectmechanistic
pleiotropy or the contribution of a more general factor related to one's overall burden of psycho-
pathology (i.e., p-factor) [62] [63].

Considering this literature, a one-to-one mapping between diagnoses and pathophysiological
mechanism seems unlikely. Rather, the available evidence suggests that dysfunction of any single
brain region (or network) is neither necessary nor sufficient for symptom expression (consistent
with amany-to-onemapping), and dysfunction of any given brain region (or network) is not unique
to any disorder (consistent with a one-to-many mapping). A reasonable response following such
observations would be to assume a many-to-many mapping, in which multiple brain regions or
systems contribute to either common or divergent psychiatric phenotypes (Figure 2D). While
this assumption may be more realistic based on current evidence, it does not offer a parsimoni-
ous explanation.

A major impediment to achieving such parsimony is that we do not currently understand how
different scales of resolution in our biological measures should be aligned. Here, a resolution
scale refers to our capacity to map the brain at the level of individual cells, regions, circuits, or
broader macroscopic regions (Figure 2E). Noninvasive neuroimaging is limited in this respect,
with most current techniques only able to probe brain structure and function at a spatial resolution
of 1mm3. Over the past decade, progress has been made in combining coarse-scale measures
with complementary information that allows various annotations of the brain across different scales
[64], such as data provided by transcriptomics [65–68], histology [69], and chemoarchitectonic
Trends in Cognitive Sciences, January 2025, Vol. 29, No. 1 93
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mapping [70], among others [71,72]. The combination of these techniques has already helped to
characterize the molecular correlates of various clinical imaging phenotypes [65], but a major chal-
lenge will involve integrating information across different spatial scales [73,74] to understand pre-
cisely how microscale processes may drive the macroscale morphological and functional
changes observed in patient populations. Indeed, dysfunction within a single brain region may
emerge from multiple cellular or molecular causes.

Problematic assumption 4: diagnostic categories are appropriate phenotypic
constructs for uncovering pathophysiological mechanisms
The fourth core assumption of the case–control paradigm is that diagnoses are the appropriate
phenotypic resolution for uncovering pathophysiological mechanisms. It remains to be deter-
mined whether investigation of individual signs, symptoms, traits, behaviors, syndromes, or
broader dimensions/constructs would be more fruitful (Figure 2E). The limited progress encoun-
tered after decades of work focusing on diagnoses should cause us to question whether this is
the most appropriate level of phenotypic resolution or granularity, particularly given the issues
considered in relation to problematic assumption 1.

A parallel approach, with its origins in cognitive neuropsychiatry [75] and lesion studies [76],
focuses on specific symptoms and/or symptom components, such as delusions [77], hallucina-
tions [78], and anhedonia [79]. This work has shed light on the neurocognitive mechanisms of
specific clinical features, but it has not yet explained how different symptoms relate to each
other and why some covary with each other more than others [80–82].

Alternative approaches leverage quantitative methods, predominantly factor analysis, to identify
an empirically derived model of psychopathology. Such analyses of a large number of psychopa-
thology signs, symptoms, and behaviors suggest that illness can be explained by a small set of
hierarchically-organized and continuously distributed phenotypic dimensions, as exemplified by
the HiTOP [10,83] (Box 3). A strength of these approaches is that they can facilitate our ability
to map brain alterations occurring at different spatial and temporal scales to clinical phenomena
with varying degrees of specificity in a way that circumvents many of the problems associated
with reliance on diagnostic categories.
Box 3. HiTOP maximizes phenotypic variability in the measurement of psychopathology

The HiTOP model [10] comprises conceptually and empirically homogeneous psychopathology dimensions hierarchically
organized from broad generality to high specificity (https://www.hitop-system.org/the-framework). At the top of the HiTOP
model is the p-factor, conceptualized as a broad liability to many forms of psychopathology [62]. Empirically related
but subordinate to the p-factor are conceptually and empirically narrower dimensions consisting of superspectra and
spectra, such as Internalizing, describing syndromes focused on the self, and embedded below more specific
subfactors, such as Distress, incorporating components related to depression and anxiety. At the bottom of the hierarchy
are individual signs, symptoms, and maladaptive behaviors [10]. The HiTOP approach seeks to maximize phenotypic var-
iability within and between individuals in the measurement of psychopathology, to facilitate the likelihood of identifying the
neural mechanisms of psychiatric illness. First, individuals are not arbitrarily grouped together in heterogenous clusters be-
cause of the assignment of a common diagnostic label, and each are measured separately. Second, psychopathology is
measured dimensionally, such that individual differences along the full continua of frequency, intensity, and/or severity are
captured. Third, each individual is comprehensively profiled across the full spectrum of psychopathology, such that differ-
ences in all hierarchical dimensional components are measured. Fourth, psychopathology is assessed at a high level of
granularity, including homogenous symptom components andmaladaptive traits and individual signs, symptoms, and be-
haviors, maximizing individual differences. An omnibus measure of the HiTOP model is currently in development [128]. In
the meantime, researchers can use existing measures to assess HiTOP constructs (https://hitop.unt.edu/clinical-tools/
hitop-friendly-measures). Ideally, multiple HiTOP constructs at any level of generality or specificity can be chosen as targets
for researchers conducting psychiatric neuroimaging studies. HiTOP is an empirically-grounded, comprehensive charac-
terization of psychopathology that provides for the study of phenotypic variability. However, at present, this framework is
largely theoretical and requires further biological validation [129].
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Such efforts will be enhanced by a greater appreciation for the need for precision phenotyping.
This need has been recognized in neuroimaging research for some time, with efforts directed to-
wards improving scan acquisitions [84], data processing and denoising pipelines [85–87], and the
acquisition of more extensive data in individuals [88,89]. More accurate and consistent terminol-
ogy surrounding biological phenotypes, such as the definitions of brain regions and networks, will
also be pivotal for future work [90].

By comparison, improving the measurement precision of psychiatric behavioral phenotypes
(that is, observable characteristics or traits) is a cost-effective means for more accurately mapping
the neural correlates of psychiatric illness, but it has received less attention (Box 4) [91–94]. This
is a critical omission since phenotypic imprecision (a collection of factors that compromise
the construct validity and reliability of behavior phenotypic measures) affects all subsequent
inferences [93].

Precision phenotyping approaches that leverage quantitative methods (e.g., Box 4) will shed
light on how different signs, symptoms, traits, behaviors, syndromes, or broader dimensions/
constructs relate to each other and map onto biological measures at different resolution scales.
Such efforts may be complemented by a focus on clinically meaningful outcome measures,
such as treatment response or longitudinal prognosis. This effort could be facilitated by linking
Box 4. Precision behavioral phenotyping as a strategy for uncovering the neural mechanisms of psychiatric
illness

The measurement precision of psychiatric phenotypes is often neglected in biological studies. Phenotypic imprecision can
be defined as a collection of factors that compromise the construct validity and reliability of behavioral phenotypic mea-
surement. Phenotypic imprecision affects all levels of inference as any analyses that rely on the psychological measure will
be inaccurate [93]. Precision behavioral phenotyping offers a cost-effective way of enhancing effect sizes in such research
and can involve several strategies:

(i) Sampling participants along the full dimensional continuum of severity increases phenotypic variability and statistical
power while mitigating sampling biases.

(ii) Comprehensive assessment of psychological attributes using multiple measures (i.e., deep phenotyping) allows model-
ing of comorbidity and heterogeneity and facilitates data pooling.

(iii) Splitting psychopathology constructs into finer-grained elements ensures that variance in a measure reflects a single
target psychiatric behavioral phenotype enabling reliable and valid inference.

(iv) Increasing phenotypic resolution by adding items from a scale that measures a construct representing the opposite,
adaptive end of the continuum (e.g., assessing a spectrum of behavior ranging from attention problems to attention con-
trol) extends the proportion of the phenotypic latent trait continuum that quantifies meaningful individual differences.

(v) Establishing measurement invariance (i.e., equivalence of measurement properties of psychopathology scales between
subgroups or subsamples, such as females and males) allows meaningful comparison between a greater number of
groups and individuals.

(vi) Mixture modeling is an analytic approach that is used to address non-invariance and identify clusters or homogeneous
subtypes/subgroups embedded within participant samples.

(vii) Multimethod assessment (i.e., pooling results from different types of measures of the same construct, such as ques-
tionnaire-based and cognitive measures) can overcome method bias, which results from error due to a reliance on one
single type of measurement.

One or more of these techniques may be implemented in psychiatric neuroimaging studies to improve construct validity
and reliability and to capture increased variability of the target behavioral phenotype (for discussion and worked examples,
see [93]). For instance, the Extended Strengths and Weaknesses Assessment of Normal Behavior (E-SWAN) is an exam-
ple of a collaborative effort focused on improving the measurement of psychiatric phenotypes through development of
questionnaires that capture the full spectrum of the phenotypic distributions (http://www.eswan.org/; [130])
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Outstanding questions
What is the time and context within
which neural alterations emerge and
change for a given individual?

In the absence of objective diagnostic
measures for psychiatry, how can we
make the most of clinically useful
outcome measures (such as those
derived from electronic health
records) to understand the biological
mechanisms of psychiatric illness?

How representative are our clinical
samples compared to those
encountered in real-world clinical
settings?

What are the underlying neural
mechanisms that mediate and
constrain the phenotypic expression
of psychiatric illness?

How do we disentangle the cause from
consequence, compensation, confound,
comorbidity and confound for disorder-
related findings?

How can we integrate biological and
behavioral information across spatial
and temporal scales?

How can we optimize the
measurement of clinical and biological
phenotypes?

How can large-scale population
studies be balanced with deep
phenotyping to provide unique and
complementary insights in biological
psychiatry?
neuroimaging studies with the comprehensive longitudinal data captured by electronic health
records.

Concluding remarks
Traditional one-size-fits-all approaches, as embodied by classical case–control paradigms, are
unlikely to significantly advance our understanding of the biology of mental illness. Here, we
have outlined the problematic assumptions on which this approach is based and have consid-
ered some potential solutions that can be used to move the field forward.

A common thread linking these possible solutions is that they embrace, rather than seek to mit-
igate, variability. Normative modeling offers a way to move beyond group mean comparisons to
characterize neural variability across individuals by generating personalized brain maps [15], while
precision phenotyping of symptomatology is perhaps the quickest and most cost-effective way
to improve robust and reliable brain–behavior associations [93]. As these techniques evolve, in-
corporating the time and context within which biological and behavioral changes emerge at an in-
dividual level [95–97], and the inclusion of clinically meaningful outcome measures, will be
essential for developing personalized and effective interventions [98,99] that address the diverse
and interconnected factors influencingmental health. This effort should include, but should not be
limited to, improving our understanding of how brain and behavior are related across socio-
demographically diverse groups in different environmental and cultural contexts [100–102] (see
Outstanding questions).

Such investigations will need to be viewed from a network-based perspective of brain function and
pathology. Numerous adaptive andmaladaptive changes can occur in the brain following pathology
or insult (see [22,26,103] for discussion). Analytical frameworks that directly test competing hypoth-
eses regarding the neural processes that mediate and constrain network changes will help to
localize pathological vulnerabilities earlier in development, track and predict patterns of disease
spread, and provide insight into which networks to target for treatment (seeOutstanding questions).

Finally, as the field strives to uncovermore parsimonious explanations of the biological mechanisms
underlying psychiatric illness, future research should focus on two challenges/directions. First,
most approaches within biological psychiatric research, and neuroimaging in particular, cannot
tease apart cause (i.e., an upstream factor related to pathogenesis) from consequence (a down-
stream effect). It is also often unclear whether a particular brain change represents a primary effect
of pathology, a compensation for pathology, confound (a methodological artifact), or comorbid
effect [43]. Methods for disentangling these processes at the individual level are required (see
Outstanding questions). Second, precision phenotyping across spatial and temporal scales, in
terms of biology and behavior remains a challenge for the field (see Outstanding questions).
Embracing frameworks that account for biological, behavioral, and environmental variability across
scales will enhance our understanding of the biological mechanisms underlying psychiatric illness.
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