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Thedistinction between externalizing and internalizing traits has beena
classic area of study in psychiatry. However, whether shared or unique brain
network features predict internalizing and externalizing behaviors remains
poorly understood. Using asample of 5,260 children from the Adolescent
Brain Cognitive Development study, 229 adolescents from the Healthy Brain
Network and 423 adults from the Human Connectome Project, we show that
predictive network features are, at least in part, distinct across internalizing
and externalizing behaviors. Across all three samples, behaviors within
internalizing and externalizing categories exhibited more similar predictive

feature weights than behaviors between categories. These data suggest shared
and unique brain network features account for individual variation within
broad internalizing and externalizing categories across developmental stages.

The distinction between ‘internalizing’ and ‘externalizing’ behaviors
has been a classic area of study in child and adolescent psychiatry'.
Internalizing behaviors are directed toward the individual and manifest
intheir extreme form as sadness, withdrawal, somatic complaints and
anxiety, while externalizing behaviors are directed toward the environ-
mentor others and involve disruptive and aggressive behaviors®. These
behaviors have been linked to increased risk for suicide attempts in
childhood and adolescence®* as well as worse work performance and
lower cognitive abilities in adulthood**. However, the neural underpin-
nings associated withinternalizing and externalizing behaviors across
developmental stages remain poorly understood.

Throughout development, functional connectivity (FC) patterns
within and between large-scale brain networks can predict individual
differences in cognition’, impulsivity® and psychiatric symptoms®’.

While individual-level variability in the organization of large-scale
brain networks can predict individual differences within broad cat-
egories of cognition, personality and mental health in both children
and adults'"'?, macroscale patterns of brain functioning are dynamic
across the lifespan™. Therefore, it is unclear whether the specific
brain-behavior relationships observed in childhood mirror those
in other developmental stages. Furthermore, although shared
network features account forindividual variation within broad classes
of behavior", individual-specific patterns of functional network con-
nections may predict even finer-grained categories, such as internal-
izing and externalizing. In this Article, we examine the extent to which
brain-based predictors of internalizing and externalizing behaviors are
similar across a large sample of children and independent samples of
adolescents and young adults.
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In the present study, we predicted internalizing and external-
izing measures of psychopathology in a sample of children from
the Adolescent Brain Cognitive Development (ABCD) study'® from
their resting-state functional connectivity (RSFC) matrices using
kernel ridge regression (KRR) models (Supplementary Methods 1).
We further explored RSFC predictors of internalizing and external-
izing in an independent cohort of adolescents from the Healthy
Brain Network (HBN)" and an independent cohort of young adults
from the Human Connectome Project (HCP)'®, Across all three sam-
ples, the exact test of differences” revealed that network features
more similarly predicted pairs of behavioral measures within either
the internalizing or the externalizing category than those across
categories, supporting internalizing and externalizing behaviors
as distinct factors of psychopathology across datasets character-
ized by distinct developmental stages. Specifically, predictive net-
work features that are significantly different between internalizing
and externalizing behavior in ABCD children and HBN adolescents
involve primarily functional connections to the subcortical regions
and the visual network from other large-scale functional networks,
with HBN adolescents characterized by more distributed patterns.
However, predictive network features that are significantly diffe-
rent between internalizing and externalizing behaviorin HCP adults
involve primarily FC within large-scale canonical networks. These
results further suggested that functional network features differ-
entially predicting internalizing and externalizing behavior may
change across the lifespan.

Results

Imaging and behavioral data

To examine brain-based predictive network features of internalizing
and externalizing behavior in children, we considered resting-state
functional magnetic resonance imaging (rsfMRI) datafrom N =11,875
typically developing children (ABCD 2.0.1release'®). The final analytical
sample consisted of n =5,260 unrelated children with complete data
who passed fMRI quality control (Methods and Supplementary Tables
1and 2). Our analyses considered six measures of internalizing and
externalizing behavior (Supplementary Table 3)*°, assigning three to
the child internalizing category and three to the child externalizing
category (Supplementary Table 4).

To assess the generalizability of our ABCD results to other devel-
opmental stages such as adolescence and adulthood, we additionally
examined brain-based predictive network features of internalizing
and externalizing behavior in an independent sample of adolescents
and adults. Specifically, we analyzed rsfMRI data and measures of
internalizing and externalizing behavior from 229 HBN adolescents
(HBNreleases1-7 (ref.17)) and 423 HCP young adults (HCP S1200 data
release'®). In the HBN sample (Supplementary Table 5), we analyzed the
same measures as in the ABCD sample (Supplementary Table 6) and
assigned them similarly to adolescent internalizing and externalizing
categories (Supplementary Table 7).

In the HCP sample (Supplementary Table 8), we considered six
measures assessing the same set of internalizing and externalizing
behaviorsinadults (Supplementary Table 9)%, assigning them similarly
to adult internalizing and externalizing categories (Supplementary
Table 10). Both samples were not significantly different from the ABCD
sampleintheir levels of total internalizing and externalizing problems
(Supplementary Tables 11and 12).

Evidence for brain-behavior KRR predictionin ABCD children

Across all samples, we defined 400 cortical® and 19 subcortical®®
regions of interest (ROIs)**?* and estimated a 419 by 419 RSFC matrix
(Fig.1a,b). Following previous work", we used KRR models to predict
eachbehavioral measure from subject-specific RSFC matricesineach
sample. To evaluate predictive accuracy, we performed nested cross-
validation procedures (Methods). Pearson’s correlations between
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Fig.1|Whole-brain FC predicts internalizing and externalizing behaviors

in ABCD children. a, Four hundred cortical ROIs?* and their assignment to one

of 17 large-scale networks™. b, Nineteen subcortical ROIs*. ¢, KRR prediction
performance in ABCD children. For eachbox plot, the top and bottom edges
represent upper and lower quartiles of correlation coefficient (r) distributions, and
the horizontal line marks the median. Outliers are plotted as circles. Asterisks (*)
denote above-chance significance on the basis of permutation testing after FDR
correction (g < 0.05). Panels reproduced from: a, ref. 84 under a Creative Commons
license CCBY 4.0; b, ref. 85 under a Creative Commons license CC BY 4.0.

predicted and actual behavioral scores were used as accuracy met-
rics. Statistical significance of prediction accuracy was assessed by
permutation testing. All behavioral measures in the ABCD sample
were predicted better than chance after false discovery rate (FDR)
correction (Fig. 1c; g < 0.05). Notably, prediction accuracy is gener-
ally low (Pearson’s r=0.03-0.16). This is consistent with recent work
by Marek and colleagues that demonstrated that the effect size of the
association between RSFC and measures of psychopathology is subtle
(r=-0.05-0.05) across multiple large-scale datasets™.

By contrast, none of the behavioral measures fromthe HBN or the
HCP sample achieved better-than-chance accuracy (Supplementary
Figs.1and 2). These two samples have relatively smaller sample sizes,
thus not affording sufficient power for detecting such brain-behavior
relationships with low effect sizes.

Distinct FC predictors between categories across all samples

Here we sought to determine whether internalizing and externalizing
behaviors exhibited distinct patterns of predictive feature weights
across datasets. At each cross-validation fold, we quantified the ‘feature
importance’ of eachinterregional RSFC edge, predicting each behavior
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using Haufe’s transformation (Methods)?*, yielding a 419 x 419 predic-
tive feature weight matrix for each behavior in each sample.

Next, consistent with previous work?*?, we analyzed whether
predictive feature weights computed from KRR model outputs were
more similar among behaviors within versus between internalizing
and externalizing categories using the exact test of differences”. We
conducted exact tests of differences between pairs of predictive weight
vectors associated with each RSFC edge, predicting different pairs of
behavioral measures across all cross-validation folds. In each sam-
ple, we assessed whether predictive feature weights associated with
behavioral pairs within the same categories were more similar (that s,
significantly different across alower proportion of RSFC edges out of
all 87,571RSFC edges) than predictive feature weights associated with
behavioral pairs across different categories (Methods).

InABCD children, the proportions of RSFC edges exhibiting signifi-
cantly different predictive feature weights were higher between each
internalizing subscale and Total Child Externalizing Problems Scale
(48.4%and16.7% of edges) thanbetween the two internalizing subscales
(0.42%; Fig. 2a). Further, the proportions of edges exhibiting signifi-
cantly different predictive feature weights were higher between each
externalizing subscale and Total Child Internalizing Problems Scale
(37.3% and 29.1%) than between the two externalizing subscales (20.0%;
Fig.2a).Sinceinternalizing and externalizing measures were reported
by different family members across ABCD children, we repeated these
analyses within the subset of children whose behavioral measures were
reported by their mothers and observed a consistent pattern of results
(Supplementary Fig. 3).

Inboth HBN adolescents and HCP adults, the patterns we observed
were broadly consistent with the ABCD results. The proportions of
RSFC edges exhibiting significantly different predictive feature weights
were higher between each internalizing subscale and Total External-
izing Problems Scale (51.4% and 47.3% in HBN (Fig. 2b); 41.8% and 39.9%
in HCP (Fig. 2c)) than between the two internalizing subscales (0.69%
inHBN (Fig. 2b); 0.54%in HCP (Fig. 2c)). Moreover, the proportions of
edges exhibiting significantly different predictive feature weights were
higher between each externalizing subscale and Total Internalizing
Problems Scale (41.8% and 47.8% in HBN (Fig. 2b); 48.4% and 41.0% in
HCP (Fig. 2¢)) than between the two externalizing subscales (33.7%
in HBN (Fig. 2b); 23.6% in HCP (Fig. 2c)). These results suggest that
brain-based predictive features within internalizing and externalizing
categories are more similar than predictive features between these
categories across ABCD children, HBN adolescents and HCP adults.
Overall, brain network features predicting behaviors within the same
category aremore similar to each other thanto those predicting behav-
iorsfromthe other category across datasets characterized by distinct
developmental stages.

Previous work showed that predictive features are generally
similar across mental health measures". Our findings showed that
beyond this broad pattern of similarity within the general domain of
mental health, predictive feature weights were more similar within
than between internalizing and externalizing categories across mul-
tiple datasets with different age groups. These findings are consistent
with theoretical models that consider internalizing and externalizing
behaviors as distinct constructs of psychopathology under a general
psychopathology p factor™?’.

Network blocks with distinct FC predictors within each sample

Having established that distinct RSFC features drive the prediction of
total internalizing and externalizing problems across distinct devel-
opmental stages, we next examined which networks contained the
largest proportions of RSFC edges whose associated predictive feature
weights were significantly different between total internalizing and
externalizing problems in each developmental stage. We listed out
the top five network blocks in terms of the proportions of FC edges
that significantly predicted Total Internalizing Problems Scale and

Total Externalizing Problems Scale in each sample (Supplementary
Tables 13-15).

Among ABCD children, network blocks containing the highest
proportions of RSFC edges with significantly more positive or less
negative feature weights when predicting total internalizing problems
than predicting total externalizing problems involved primarily func-
tional connections from the other networks to the subcortical regions.
High proportions of RSFC edges within attention and frontoparietal
networks also predicted total internalizing problems more positively
orless negatively than total externalizing problems. However, network
blocks containing high proportions (>50%) of RSFC edges with signifi-
cantly more positive or less negative feature weights when predicting
total externalizing problems than predicting total internalizing prob-
lems involved predominantly between-network connectivity to the
visual network (Fig. 3 and Supplementary Table 13).

In HBN adolescents, network blocks containing the highest pro-
portions of RSFC edges that predicted total internalizing problems
more positively or less negatively similarly involved between-network
functional connections to the subcortical regions, while high propor-
tions of RSFC edges that predicted total externalizing problems more
positively or less negatively can be similarly found in network blocks
involving the visual network. On top of these overlapping patterns with
ABCDresults, high proportions of between-network functional connec-
tions between the attention networks and other networks additionally
emerged as different predictors of total internalizing and externalizing
problems (Fig. 3 and Supplementary Table 14).

In HCP adults, the majority of predictive edges are found within
rather than between functional networks, although high proportions
of RSFC edges differently predicting total internalizing and external-
izing problems canstillbe found in a few between-network functional
connections involving subcortical regions and the visual network
(Fig. 3 and Supplementary Table 15).

Acrossallthree samples, the highest proportions of RSFC predic-
torsthat predicted total internalizing problems more positively or less
negatively than total externalizing problems can be found between the
temporal-parietal network and the subcortical regions. These results
suggest that more positive or less negative FC between the temporal-
parietal network and the subcortical regions may be a specific predictor
ofinternalizingbehavior across distinct developmental stages. Distinct
RSFC predictors of internalizing and externalizing behavior in adult-
hood may be more evident within large-scale functional networks,
while they may be more represented in between-network functional
connectionsinvolving visual network and subcortical regions in child-
hood and adolescence.

Directionality of network FC prediction within each sample
While the previous sectionidentified network blocks that most differ-
ently predicted total internalizing and externalizing problems scoresin
each sample, it is not clear whether stronger predictions of one score
were driven by highly positive predictive feature weights within these
network blocks predicting the score or highly negative predictive
feature weights associated with the other score, or both. Hence, in this
section we determined whether any of the network blocks identified
in the previous section also drive the positive or negative prediction
oftotalinternalizing and externalizing problemsin the corresponding
sample where they emerged as the strongest differential predictors.
To determine the specific RSFC features that consistently predicted
totalinternalizing and externalizing problems, we performed permuta-
tion tests and visualized statistically significant feature weights associ-
ated with predicting total internalizing problems and total externalizing
problemsin each sample. To limit the number of multiple comparisons
and allow inferences about well-replicated, functionally relevant large-
scalebrain systems, predictive feature weights for each behavior were
averaged within and between 18 functional modules (following the
17-network partition in ref. 30 plus subcortical structures®) at each
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Fig. 2| Distinct RSFC features predict internalizing and externalizing
behaviors across all samples. a-c, More similar predictive RSFC features are
seen within than between behavioral categories in ABCD children (a), HBN
adolescents (b) and HCP adults (c). Numbers reflect the proportion of RSFC

— Between-category dissimilarity
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edges at which predictive feature weights associated with a pair of behavioral
measures were significantly different according to the two-tailed exact tests of
differences after FDR correction (g < 0.05).

permutation. Permutation testing was performed on mean predictive
feature weights from each of the resulting 171 unique network blocks.
Statistically significant predictive feature weights were summed across
eachrowonFig.4aand plotted on brain surface on Fig. 4b for the posi-
tive weights and on Fig. 4c for the negative weights.

Figure 4 illustrates that both shared and unique RSFC patterns
predict total internalizing and externalizing problems among ABCD
children, HBN adolescents and HCP adults. To determine which net-
work block(s) drive the prediction of total internalizing and external-
izing problems in each sample, we averaged statistically significant
predictive feature weights from Fig. 4a across all subnetworks within
eight large-scale functional networks—temporal-parietal, default,
frontoparietal, limbic, salience/ventral attention, dorsal attention,
somato/motor and visual—and within the subcortical regions, resulting
in a9 x 9 matrix of network-level average predictive feature weights
for each total score and each sample. We then determined the three
network blocks with the most positive and negative average predic-
tive feature weights with respect to each total score and each sample
(Supplementary Table 16).

According to exact tests of differences, RSFC edges between the
temporal-parietal network and the subcortical predicted total internal-
izing problems more positively or less negatively than total external-
izing problems across all three samples (Supplementary Tables 13-15).
These differences seemed to be driven by highly negative predictions
of total externalizing problems in both ABCD children and HBN ado-
lescents and by highly positive predictions of total internalizing prob-
lems in HCP adults. A similar pattern was observed for the network
block involving subcortical regions and the somato/motor network
(Supplementary Table 16). These results suggest that decreased FC
of the temporal-parietal and somato/motor networks with the sub-
cortical regions may be specific predictors of externalizing behavior
across childhood and adolescence, and increased FC within these
network blocks may be specific predictors of internalizing behavior
inadulthood.

Results from the exact tests of differences also showed that
between-network FC involving the visual network predicted total
externalizing problems more positively or less negatively than total
internalizing problems across ABCD children and HBN adolescents
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Fig. 3| Differential RSFC predictors of internalizing and externalizing
behaviors across network blocks within each sample. a-c, Proportions of

RSFC edges at which predictive feature weights are significantly different
between total internalizing problems and total externalizing problems within
and between large-scale functional networks and subcortical regions in ABCD
children (a), HBN adolescents (b) and HCP adults (c). If predictive feature weights
associated with total internalizing problems across all RSFC edges within a
network block were on average more positive or less negative/more negative or
less positive than those associated with total externalizing problems, the network
blockis red/blue. TempPar, temporal-perietal; Sal/VentAttn, salience/ventral
attention; DorsAttn, dorsal attention; SomMot, somato/motor.

(Supplementary Tables 13 and 14). These significant differences were
driven by highly negative prediction of total internalizing problems
inbothsamples (Supplementary Table 16), suggesting that decreased
between-network FC involving the visual network may be a specific
predictor of internalizing behavior in childhood and adolescence.

Finally, RSFC edges within the limbic and temporal-parietal net-
works and within the subcortical regions predicted total externalizing
problems more positively than total internalizing problems among
HCP adults (Supplementary Table 15). These three sets of RSFC edges
exhibited the most positive predictive feature weights with respect to
total externalizing problems in HCP adults (Supplementary Table 16),
suggesting that increased FC within the limbic and temporal-parietal
networks and within the subcortical region may be specific predictors
of externalizing behavior in adulthood.

Discussion

In this study, we first used RSFC data from a large, diverse sample of
childrento predictinternalizing- and externalizing-related behaviors.
Predictive feature weights associated with behavioral pairs within inter-
nalizing and externalizing categories were more similar than predictive
feature weights between categories. We repeated these analysesinan
independent sample of adolescents and young adults and observed the
same pattern. These results suggest that functional network predic-
tors of internalizing and externalizing behaviors may be more similar
within the same symptom classes than between different symptom
classes across distinct developmental stages.

Internalizing and externalizing symptoms reflect distinct factors
across various mental disorders, irrespective of demographic and
collection method® . Although large-scale networks can be mecha-
nistically informative for studying neurocognitive processes** and
psychiatric phenotypes'****°, the similarity of whole-brain RSFC pat-
terns predicting measures of internalizing and externalizing behavior
hasnotbeendirectly assessed. Previous work has shown that predictive
network features are similar across behaviors within the broad catego-
ries of mental health”. Using KRR models™*, we were able to show that
beyond this broad pattern of similarity within the general domain of
mental health, predictive feature weights were more similar within than
between behavioral categories across ABCD children, HBN adolescents
and HCP adults. Of note, this cross-sample consistency was robust to
differences in demographic characteristics, model implementation,
imaging acquisition and processing protocols across cohorts. These
findings are consistent with theoretical models that consider internal-
izing and externalizing behaviors as distinct constructs of psychopa-
thology under a general psychopathology p factor®?’,

Wealso investigated functional network predictors that differen-
tially predicted total internalizing and externalizing problems ineach
dataset. Across both ABCD children and HBN adolescents, between-
network RSFC edges to the visual network contained more negative
feature weights when predicting total internalizing problems than
when predicting total externalizing problems and were among the
most negative predictors of total internalizing problems. Furthermore,
RSFC edges from the other functional networks to the subcortical
regions, particularly RSFC from the temporal-parietal and somato/
motor networks to the subcortical regions, exhibited more negative
feature weights predicting total externalizing problems than total
internalizing problems, and were among the most negative predic-
tors of total externalizing problems. By contrast, the same sets of
RSFCedgestothe subcortical regions exhibited more positive feature
weights predicting total internalizing problems than total externalizing
problems and were among the most positive predictors of total inter-
nalizing problems among HCP adults. Another observation from the
HCP adultsisthat RSFC edges within the limbic and temporal-parietal
networks and within the subcortical regions exhibited increased fea-
ture weights when predicting total internalizing problems than when
predicting total externalizing problems and were among the most
positive predictors of total internalizing problems. Broadly, these
results suggest that decreased between-network FC involving the
visual network may be a specific predictor of internalizing behavior,
while decreased FC between temporal-parietal and somato/motor
networks and the subcortical regions may be a specific predictor of

Nature Mental Health | Volume 3 | March 2025 | 306-317

310


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-025-00388-5

Child internalizing
TempPar ;
Default

Frontoparietal i
Limbic =
Sal/VentAttn

Network
Amigelopaud
21njes) J}I0MISN

Visual

Subcortical
-1.5

i‘m_ﬂ'.‘lﬂi
Frontoparietal i
Limbic
Sal/VentAttn

TempPar
Default

Network

Visual
Subcorltsiggl "

Adolescent internalizing
N [

TempPa
Default

Frontoparietal i
Limbic
Sal/VentAttn

Network

Visual
Subcortical

Sal/VentAttn ||
DorsAttn I

Network

visual |
Subcortical

Default

Frontoparietal I
Limbic « &
Sal/VentAttn

DorsAttn I
SomMot |

visual || &
Subcortical

Network

TempPar
Default

Frontoparietal
Limbic
Sal/VentAttn
DorsAttn

Network

SomMot

Visual
Subcortical

nF s e
Fig. 4 | Predictive RSFC feature weights associated with total internalizing
problems and total externalizing problems in ABCD children, HBN
adolescents and HCP adults. a, Significant feature weights based on
permutation testing within and between large-scale functional networks and
subcortical regions b, Positive predictive feature weights summed across rows
of panel afor each cortical region. Here stronger RSFC associated with a given

[+

Child internalizing Child internalizing

95% 95%

Aigeloipaid ainjesy
JOM1aU BAIISOd
Aligelolpaid ainjesy
Jiomiau anneban

0% 0%

Adolescent internalizing

cortical region predicts higher behavioral scores. ¢, Negative predictive feature
weights summed across rows of panel a for each cortical region. Here weaker
RSFC associated with a given cortical region predicts higher behavioral scores.
Inboth panels b and ¢, the color of each cortical region indicates its percentile
among 400 regions.

Nature Mental Health | Volume 3 | March 2025 | 306-317

31


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-025-00388-5

externalizing behavior across childhood and adolescence. Conversely,
increased FC within the limbic and temporal-parietal networks and
within the subcortical regions may be a specific predictor of external-
izing behavior in adulthood.

Ourresults highlight theimportance of FC between the temporal-
parietal and somato/motor networks and the subcortical regions in
predicting internalizing and externalizing behavior across the three
samples. The temporal-parietal network regions are theorized to be
important for social emotion processing*>** and theory of mind***,
while the somato/motor network encompasses motor processing
regions**™*, The strengths of their FC with the subcortical regions
have been identified as unique correlates of externalizing behavior
in preadolescence according to one previous study®. Our results par-
tially agreed with this previous finding that while these RSFC metrics
may be specific predictors of externalizing behavior in childhood and
adolescence, they may become specific predictors of internalizing
behaviorin adulthood.

Overall, we observed both shared and unique RSFC predictive
features associated with internalizing and externalizing behavior
across datasets. The differences in predictive feature patterns may be
attributable to development of functional network organization from
childhood through adolescence and then adulthood"">*"**, or to site
oracquisition differences among the three collection efforts. Of note,
ourinterpretations are limited by the cross-sectional nature of the avail-
able data.Inaddition, many participants were excluded due toimage-
quality issues (Supplementary Table 1). As such, the resulting sample
was not demographically matched across the included and excluded
participants. Thereis a clear tension between previous work indicating
that in-scanner motion can result in systematic artifacts in FC**** and
that predictive models can fail to generalize across populations®*”. In
part, thismay be addressed through the future availability of longitu-
dinal samples that extend from childhood through adolescence and
adulthood, allowing for the direct assessment of longitudinal trajec-
tories of brain development and associated brain-based predictions
withinindividuals across the lifespan. Another limitation of our study is
that we did not test our models separately ineach sex. Previous studies
have suggested brain-based predictive models often fail to generalize
acrosssexes”, and future work should test sex-/gender-specific models
of behavior®. Moreover, behavioral scores of the ABCD children were
reported by their parents, and these children’s self-reported scores
were not available. As such, the difference patterns we observed across
samples failed to account for the effects of reporter bias.

Takentogether, our study found that predictive network features
are more similar within than between categories of internalizing and
externalizing behavior across three datasets characterized by distinct
developmental stages. Negative RSFC edges from other large-scale
networks to the visual network and to the subcortical regions most dif-
ferentially predicted internalizing and externalizing behavior, respec-
tively, in ABCD children and HBN adolescents. However, increased
FC between temporal-parietal and somato/motor networks and the
subcortical regions and those within the limbic and temporal-parietal
networks as well as the subcortical regions most differentially pre-
dicted internalizing and externalizing behavior, respectively, in HCP
adults. Future work will benefit from the longitudinal study of com-
mon and distinct brain-based predictive features across childhood,
adolescence and adulthood.

Methods

Participants

Atotal of 11,875 typically developing children and their parents across
21sitesinthe United States participated in the ABCD study at baseline
(ABCDrelease2.0.1). The ABCD study was approved by the institutional
review board at the University of California, San Diego®. Parents or
guardians provided written consent, while each child provided written
assent for participation®. The final analytical sample consisted of 5,260

unrelated children (M, = 9.94, 48.88% female) who passed strict pre-
processing quality control and had complete rsfMRI dataand complete
scores across all behavioral measures. The percentages of biological
mother and father reporters in the final sample are 85.0% and 10.2%,
respectively. We combined the 21ABCD sites into 8 ‘site categories’ to
reduce sample size variability across sites (Supplementary Table 2).
Participants within the same site were also in the same site category.
Detailed demographic information can be found in Supplementary
Tablel.

The HBN project was approved by the Chesapeake Institutional
Review Board (now Advarra, https://www.advarra.com/) and aims
to recruit 10,000 individuals aged between 5 and 21 years from the
New York area. All participants aged over 18 years provided written
informed consent, while all participants aged below 18 years provided
written assent along with their legal guardians’ written informed
consent”. After completion of the study, all participants were offered
referralinformationand up to threein-person feedback sessions as well
as monetary compensation”. Following data processing and quality
control, 412 participants aged between 12 and 18 years from the HBN
study (HBN releases1-7 (ref.17)) were available for analyses. Our final
analytical sample consisted of 229 adolescents (M, =14.73, 42.36%
female) who did not differ from ABCD children in the levels of total
internalizing and total externalizing problems (Supplementary Table
11). Detailed demographicinformation canbe found in Supplementary
Table5.

Atotal of 1,206 healthy adults participated in the HCP study (HCP
S1200 DataRelease) and provided writteninformed consent before par-
ticipationin the study'. After preprocessing quality control ofimaging
data, participants were filtered from Li’s set of 953 participants® on the
basis of the availability of a complete set of structural fMRI and rsfMRI
scans, as well as all behavioral scores of interest. Our main analysis
consisted of 423 adult participants (M, = 28.99, 56.74% female) who
fulfilled all selection criteria' and did not differ from ABCD children
in the levels of total internalizing and total externalizing problems
(Supplementary Table 12). Detailed demographic information can be
found in Supplementary Table 8.

Neuroimaging
Data acquisition. For the ABCD study, all TIw images and fMRI data
were acquired using protocols harmonized across three Teslascanner
platforms (Phillips, Siemens Prisma and General Electric 750) at 21 sites.
Twenty minutes of rsfMRI data, consisting of four 5 min runs, was col-
lected from each ABCD child participant. The structural T1scans were
acquired withl mmisotropicresolution witharepetition time (TR) of
2,500 ms. Full details of imaging acquisition can be found elsewhere®.
The fMRIdatain the HCP data were acquired using an optimized
protocolwith 2 mmisotropicresolutionand a TR of 720 ms. Each HCP
participant went through one structural MRI session and two fMRI
sessions. EachfMRI session consisted of two 15 min resting-state scans
withopposite phase encoding directions (left/right and right/left). The
structural T1 scans were acquired using 0.7 mm isotropic resolution
and a TR of 2,400 ms. Full details of the acquisition protocol can be
found elsewhere’®.

Data processing. Minimally preprocessed T1w images® in the ABCD
study were further processed using FreeSurferv.5.3.0°“ ", The cortical
surface meshes were then registered to a common spherical coordi-
nate system®®®’, Participants who failed recon-all quality control in
FreeSurfer were subsequently excluded®’. The minimally preprocessed
fMRI data® were subsequently processed in the following manner.
The initial frames were removed depending on the type of scanner®.
The resulting fMRI images were then aligned with the processed Tlw
images’®with FsFast”, and only runs with registration costsless than 0.6
were retained. Framewise displacement (FD)”?and voxel-wise differen-
tiated signal variance (DVARS)> were computed by fsl_motion_outliers.
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Volumeswith FD > 0.3 mmor DVARS > 50, along with one volume before
and two volumes after, were flagged as outliers. A bandstop filter was
applied toremove respiratory pseudomotion (0.31-0.43 Hz)”. Uncen-
sored segments of data having fewer than five contiguous volumes
were also flagged as outliers and censored’”. Runs with more than
half of the volumes flagged as outliers and/or maximum FD >5mm
were discarded. Participants with less than 4 min of datawere excluded
from further analysis. Nuisance regressors, including global signal, six
motion correction parameters, averaged ventricular signal, averaged
white matter signal and their temporal derivatives (18 regressors in
total), were regressed out of the fMRI time series from the unflagged
volumes. Data were interpolated across censored frames’, band-
pass filtered at 0.009 Hz < f< 0.080 Hz, projected onto FreeSurfer
fsaverage6 surface space and smoothed using a 6 mm full-width half
maximum kernel.

The rsfMRI data from the HBN dataset were preprocessed with
the following steps: (1) removal of the first eight frames; (2) slice time
correction; (3) motion correction and outlier detection: frames with
FD > 0.3 mm or DVARS > 60 were flagged as censored frames; one
frame before and two frames after these volumes were flagged as
censored frames; uncensored segments of data lasting fewer than
five contiguous frames were also labeled as censored frames™”;
blood-oxygen-level dependent runs with over half of the frames cen-
sored and runs with maximum FD > 5 mm were removed; (4) correc-
tion for susceptibility induced spatial distortion; (5) alignment with
structural image using boundary-based registration’’; (6) nuisance
regression: regressed out a vector of ones and linear trend, global
signal, sixmotion correction parameters, averaged ventricular signal,
averaged white matter signal and their temporal derivatives; regres-
sion coefficients were estimated from the non-censored volumes;
(7) band-pass filtering (0.009 Hz < f < 0.080 Hz); (8) interpolation
of censored frames; (9) projection onto the FreeSurfer fsaverage6
surface space; (10) smoothing with 2 mm full-width half maximum and
down-sampling to fsaverage5 surface space. Since the HBN dataset
involved three different sites, we harmonized the rsfMRI data using
the neuroCombat packageinR”.

For the HCP study, minimally preprocessed T1w images’® went
through bias and distortion correction using the PreFreeSurfer pipe-
line and registered to MNIspace. Cortical surface reconstruction was
conducted using FreeSurfer v.5.2 using recon-all adapted for high-
resolution images. The reconstructed surface meshes were then reg-
istered to the Conte69 surface template”. During fMRI preprocessing,
the fMRI data were first corrected for gradient-nonlinearity-induced
distortions. The fMRItime series in each frame were then realigned to
the single-band reference image to correct for subject motion using
rigidbody transformation’>*° with the FMRIB Software Library (FSL)®'.
The resulting single-band image underwent spline interpolation to
correct for distortions and was then registered to the TIwimage’. The
registered fMRI volumes then went through nonlinear registration
to the Conte69 surface template” and mapped to the standard CIFTI
(Connectivity Informatics Technology Initiative) grayordinate coor-
dinate space. Further details about the preprocessing and processing
pipelines of structural and functional images can be found elsewhere®,

Functional connectivity. We defined 400 cortical ROIs** and 19
subcortical ROIs* for each sample. FC was measured by Pearson’s r
correlations between the mean time series of each pair of ROIs. Cen-
sored frames were ignored when computing FC. The average FC matrix
across all runs in each participant was computed and used for subse-
quent analyses.

Measures of internalizing and externalizing behaviors

We included six measures of internalizing and externalizing behavior
inour analyses, selected from the Achenbach Child Behavior Checklist
(CBCL)** taken from child participants®? in the ABCD study. We then

assigned three measures to the child internalizing category (Total Child
Internalizing Problems, Child Anxious/Depressed, Child Withdrawn/
Depressed) and the other three measures to the child externalizing
category (Total Child Externalizing Problems, Child Rule-Breaking
Behavior, Child Aggressive Behavior; Supplementary Table 4). The
Total Child Internalizing Problems Scale is the sum of the Anxious/
Depressed, Withdrawn/Depressed and Somatic Complaints Syndrome
Subscales from the CBCL?. The Total Child Externalizing Problems
Scale is the sum of the Rule-Breaking Behavior and the Aggressive
Behavior Syndrome Subscales from the CBCL. Participants without
available data across all behavioral measures were excluded from
analysis.

Inthe HBN sample, we analyzed the same CBCL measures asinthe
ABCD sample (Supplementary Table 6) and assigned the same sets of
measures to adolescent internalizing and externalizing categories
(Supplementary Table 7). Similarly, the Total Adolescent Internalizing
Problems Scale is the sum of the Anxious/Depressed, Withdrawn/
Depressed and Somatic Complaints Syndrome Subscales from the
CBCL*.The Total Adolescent Externalizing Problems Scale is the sum
of the two subscales under the adolescent externalizing category?.

In the HCP dataset, we analyzed six measures of internalizing
and externalizing behaviors from the Achenbach Self-Report (ASR)
questionnaire” (Supplementary Table 9). These subscales assess a
corresponding set of symptomsto the CBCL subscalesinthe ABCD sam-
ple. We assigned three measures (Total Adult Internalizing Problems,
Adult Anxious/Depressed, Adult Withdrawn) to the adultinternalizing
category and the other three (Total Adult Externalizing Problems,
Adult Rule-Breaking Behavior, Adult Aggressive Behavior) to the adult
externalizing category (Supplementary Table 10). The Total Adult
Internalizing Problems Scale is the sum of the Anxious/Depressed,
Withdrawn and Somatic Complaints Syndrome Subscales from the
ASR?. The Total Adult Externalizing Problems Scale is the sum of Rule-
Breaking and Aggressive Behavior Syndrome Subscales from the ASR”.

Statistical analysis

Consistent with previous work", we used KRR with |, regularization
to predict each behavioral measure from participant-specific RSFC
matrices in each of the three samples. Details about the KRR model
canbefoundinSupplementary Methods1). Age and sex were entered
as covariates. The KRR model assumes that participants with more
similar FC patterns have more similar behavioral measures and was
implemented with nested cross-validation procedures similar to those
ofref.12.

Inthe ABCD analyses, we performed leave-three-site-clusters-out
nested cross-validation for each behavioral measure. At each fold,
a different set of three site categories served as the test set, and the
remaining five site categories were used as the training set, resulting
in 56 folds in total. Participants from the same site were all in either
the training set or the testing set. In the HBN and HCP analyses, we
implemented 60 random initiations of tenfold nested cross-validation.
Participants from the same family were assigned to either training or
testing sets and were never split across training and test sets in any
cross-validation fold.

Across all samples, model and regularization parameters were
estimated from the training set at each fold. The estimated parameters
were then applied to the unseen participants from the test set and
evaluated for accuracy by correlating predicted and actual measures®,
To assess whether model prediction performed better than chance,
statistical significance of prediction accuracy was assessed by a per-
mutation test whereby the entire cross-validation procedure was rerun
onbehavior measures randomly reshuffled across participantsineach
dataset. This generated a null distribution where a participant’s RSFC
datawere used to predict the measure of another participant from the
samesite, and the resulting null distribution would capture within-site
similarity. Care was taken to avoid shuffling between families or sites.
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Modelinterpretation

Tointerpret the predictive importance of each RSFC feature, we used
an approach from Haufe and colleagues® to transform predictive
feature weights associating each RSFC edge with the behavioral meas-
ure. Predictive feature weight was computed by the covariance between
the predicted behavioral measure and the RSFC edge. This resultedina
419 x 419 predictive feature matrix for each behavioral measure. A posi-
tive (or negative) predictive feature weight indicates that higher RSFC
predicts greater (or lower) behavioral values. Statistical significance
of these predictive feature weights was tested with permutation tests
and corrected for multiple comparison using FDR (g < 0.05). Toreduce
the number of multiple comparisons, predictive feature weights were
averaged within and between 18 large-scale functional networks?**
before conducting the permutation test.

To compare predictive network patterns within and between
internalizing and externalizing behaviors, we conducted exact tests
of differences” between pairs of Haufe-transformed® weight vectors
associated with each RSFC edge predicting different pairs of behavioral
measures across all cross-validation folds. If predictive feature weight
values associated withan RSFC edge predicting onebehavioral measure
are either larger or smaller than those associated with the same edge
predicting the other behavioral measure across more than 97.5% of all
cross-validation folds, the two-tailed P value would be smaller than
0.05, and the predictive feature weights associated with the two meas-
ureswould be considered significantly different from each other. When
comparing between each pair of behavioral measures, we repeated the
exacttest of differencesacross all 87,571 RSFC edges and corrected for
multiple comparisons using FDR. Finally, we determined the propor-
tion of edges at which the exact test of differences remained statistically
significant after FDR for each behavioral comparison.

We conducted exact tests of difference between predictive feature
weights associated with the following pairs of behavioral measures
that were found in both CBCL and ASR questionnaires (see Supple-
mentary Tables1and 2 for category assignment): Anxious/Depressed
Syndrome Subscale and Withdrawn/Depressed Syndrome Subscale,
Rule-Breaking Behavior Syndrome Subscale and Aggressive Behavior
Syndrome Subscale, Anxious/Depressed Syndrome Subscale and Total
Externalizing Problems Scale, Withdrawn Syndrome Subscale and Total
Externalizing Problems, Rule-Breaking Behavior Syndrome Subscale
and Total Internalizing Problems Scale, Aggressive Behavior Syndrome
Subscale and Total Internalizing Problems Scale, Total Internalizing
Problems Scale and Total Externalizing Problems Scale.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The ABCD data are publicly available viathe NIMH Data Archive (NDA)
and via https://abcdstudy.org. The HBN data are publicly available
via Child Mind Institute Healthy Brain Network at http://fcon_1000.
projects.nitrc.org/indi/cmi_healthy_brain_network/Data.html. The
HCP data are also publicly available and can be accessed via https://
www.humanconnectome.org. Access to all three datasets requires
Data Use Agreement.

Code availability

Code for this study is publicly available via Github under the main
branch: https://github.com/quyueyue/InternalizingExternalizingPre-
dictions.git. The software dependencies were Freesurfer (5.3.0; https://
surfer.nmr.mgh.harvard.edu), FSL (5.0.8; https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Fslinstallation), MATLAB (2018b; https://www.mathworks.
com/products/matlab.html), Jupyter Notebook 6.4.5 (Python 3.9.7
ipykernel; https://jupyter.org), Python/3.10.8-GCCcore-12.2.0 (https://
www.python.org) and the neuroCombat (v.1.0.13) package inRv.4.2.0.
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Policy information about availability of computer code

Data collection  No software used for data collection.

Data analysis Custom code for our analyses is publicly available at the following URL:
https://github.com/quyueyue/InternalizingExternalizingPredictions/tree/main

The following software was used:

MATLAB R2018b (https://www.mathworks.com/products/matlab.html)

Freesurfer 5.3.0 (https://surfer.nmr.mgh.harvard.edu)

FSL 5.0.8 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslinstallation)

Jupyter Notebook 6.4.5 (Python 3.9.7 ipykernel) (https://jupyter.org)

R 4.2.0 (https://www.r-project.org)

Python/3.10.8-GCCcore-12.2.0 (https://www.python.org)

neuroCombat package in R (https://github.com/Jfortin1/ComBatHarmonization/tree/master/R)
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Resting-state fMRI parcellations:
Schaefer et al. (2018) cortical parcellation (https://github.com/ThomasYeolab/CBIG)
Fischl et al. (2002) subcortical segmentation (https://freesurfer.net/fswiki/SubcorticalSegmentation)
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The ABCD data are publicly available via the NIMH Data Archive (NDA) and via https://abcdstudy.org. The HBN data are publicly available via Child Mind Institute
Healthy Brain Network at http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/Data.html. The HCP data are also publicly available and can be
accessed via https://www.humanconnectome.org. Access to all three datasets require Data Use Agreement.
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Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Across ABCD, HBN and HCP datasets, gender is self-reported.
In our study, ABCD release 2.0.1 sample (N=5,260; female: 48.88%), HBN releases 1-7 (N=229; female: 42.36%) and HCP WU-
Minn S1200 sample (N=423; female: 56.74%)
Gender has been used as covariate as reported in the method section. Gender-based analysis has not been directly
performed in this study.

Population characteristics ABCD release 2.0.1 sample (Age=119.27 months (SD=7.48), Race: 52.91% Caucasian, 13.63% African American, 20.72%
Hispanic, 2.19% Asian, 10.42% Others) and
HBN releases 1-7 (Age=14.73 years (SD=1.63), Race: 40.61% Caucasian, 16.59% African American, 11.35% Hispanic, 2.18%
Asian, 0.44% Indian)
HCP WU-Minn $1200 sample (Age=28.61 years (SD=3.72), Race: 77.66% Caucasian, 11.84% African American, 5.98% Asian/
Hawaiian/Other Pacific Islanders, 0.27% Indian/Alaskan, 1.60% Other/Unreported)

Recruitment Information about ABCD recruitment is published: H. Garavan et al. Recruiting the ABCD sample: Design considerations and
procedures. Developmental Cognitive Neuroscience (2018). https://doi.org/10.1016/j.dcn.2018.04.004.
Information about HBN recruitment is published: Alexander LM et al. An open resource for transdiagnostic research in
pediatric mental health and learning disorders. Scientific Data (2017). https://doi.org/10.1038/sdata.2017.181
Information about HCP recruitment is published: Van Essen DC et al. The WU-Minn Human Connectome Project: an
overview. Neuroimage (2013).

Ethics oversight Analyses were conducted according to the guidelines of the Yale University Human Subjects Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our analyses utilized publicly available ABCD, HBN and HCP neuroimaging and behavioral data. No sample size calculations were performed.
Sample size: ABCD data (N=5,260), HBN data (N=229) HCP data (N=423)

The final analytical sample of 5260 children from the ABCD study are those who were unrelated to each other, passed strict preprocessing
quality control, had complete resting-state fMRI data and complete scores across all behavioral measures.

Following data processing and quality control, 412 participants aged between 12 and 18 years old from the HBN study releases 1-7 were
available for analysis. Our final analytical sample consisted of 229 adolescents who did not differ from ABCD children in the levels of total
internalizing and total externalizing problems.

After pre-processing quality control of imaging data, 752 participants from the HCP S1200 dataset had available scores across the complete
set of structural and resting-state fMRI scans, as well as all behavioral scores of interest. Our main analysis comprised 423 adult participants,
who did not differ from ABCD children in the levels of total internalizing and total externalizing problems

Since total internalizing and externalizing problems are the two main outcomes of interest whose associated predictive feature weights were
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further examined in the current study, we focused our analyses on the subset of HBN and HCP participants who did not differ from the ABCD
sample in the levels of total internalizing and externalizing problems. The complete set of HBN and HCP participants had significantly higher
levels of total internalizing and externalizing problems than the ABCD sample because the HBN dataset was enriched for adolescents with
psychiatric diagnoses, while ABCD children were aged 9-10 and very few received a psychiatric diagnosis at this age.

Data exclusions  We excluded subjects who failed preprocessing quality control, had incomplete resting-state fMRI data and incomplete behavioral scores.

Replication Our study did not conduct any replication analyses because our study involved three different samples from three different datasets which
have different geographical and family structures to each other. For this reason, it is impossible to apply the KRR model trained in one sample
to the other ones directly. However, we used KRR models to predict behavioral measures which assess the same set of internalizing and
externalizing behaviors across the three datasets after adapting the implementation of KRR models according to the structure of each dataset.

Randomization  We utilized the publicly available ABCD , HBN and HCP datasets in our study, which was not randomized. Randomization is not pertinent to
our current investigation, as the statistical method employed (kernel ridge regression and exact test of differences) does not necessitate
randomization.
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Blinding Blinding is not relevant to this study as no data collection was involved and participants were not assigned to different groups. Our research
question and analysis pipeline did not involve group comparisons and all behavioral measures of interest were assessed as self-reported
dimensions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |Z MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

X X X X X X
Oooodod

Magnetic resonance imaging

Experimental design

Design type resting-state functional magnetic resonance imaging

Design specifications ABCD: 20 minutes of resting-state fMRI data, consisting of four 5-minute runs, was collected from each ABCD child
participant (TR=800ms)
HBN: one 10.3 minutes of resting-state fMRI run (TR=1450ms; Staten Island site) or two 5.1 minutes of resting-state
fMRI runs (TR=800ms; Rutgers and CBIC sites)
HCP: four 15-minute resting-state fMRI sessions (TR=2400ms) with opposite phase encoding directions (two sessions of
L/R and two sessions of R/L)

Behavioral performance measures  Our study utilized resting-state fMRI data which does not involve any behavioral performance measures.

Acquisition
Imaging type(s) resting-state functional MRI
Field strength 3T

Sequence & imaging parameters ABCD: Resolution: 2.4x2.4x2.4 mm; FOV: 216x216; Matrix Size: 90x90; Duration: 20 minutes (1500 timepoints); TR:
800ms; TE: 30ms; Multiband EPI acceleration: 6; flip angle: 52¢. Further details have been published: Casey BJ et al;
ABCD Imaging Acquisition Workgroup. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition
across 21 sites. Dev Cogn Neurosci (2018).

HBN: Resolution: 2.5x2.5x2.5 mm (Staten Island site) or 2.4x2.4x2.4 mm (CBIC and Rutgers); FOV:216x216; acquisition
matrix = 90 x 90; TR/TE: 800/30 (CBIC and Rutgers) or 1450/40 (Staten Island); Duration: one 10-minute scan (Staten
Island) or two 5-minute scans (CBIC and Rutgers). Further details have been published: Alexander LM et al. An open
resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data (2017). https://
doi.org/10.1038/sdata.2017.181

HCP: Resolution: 2x2x2mm; FOV: 208mm in the read direction (anterior-posterior), 180mm in the phase encoding
direction (L-R or R-L; a 104x90 matrix) and 144mm in the inferior-superior direction; Duration: 60 minutes (1500 time
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points); phase encoding directions: L/R (two 15-minute sessions) and R/L (two 15-minute sessions); TR:720ms; TE:33ms;
Multiband EPI acceleration: 8; flip angle: 52¢. Further details have been published: Smith SM et al; WU-Minn HCP
Consortium. Resting-state fMRI in the Human Connectome Project. Neuroimage (2013), and Ugurbil K et al; WU-Minn
HCP Consortium. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome
Project. Neuroimage (2013).

Area of acquisition Whole brain

Diffusion MRI [ ]used X| Not used

Preprocessing

Preprocessing software ABCD and HBN: FreeSurfer 5.3.0 and FMRIB Software Library (FSL) 5.8.0.
HCP: HCP minimal preprocessing pipelines (51200 release, march 2017). Further details have been published at Glasser MF et
al; WU-Minn HCP Consortium. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage (2013).

Normalization ABCD and HBN: projected onto FreeSurfer fsaverage6 surface space
HCP: Native fMRI volumes went through nonlinear registration to the MNI space and mapped to the standard CIFTI
grayordinate coordinate space
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Normalization template ABCD: FreeSurfer fsaverage6 surface space
HBN: FreeSurfer fsaverage6 surface space
HCP: 2mm MNI space

Noise and artifact removal ABCD: used linear regression to remove quadratic trends, signals correlated with estimated motion time courses, and the
mean time courses of cerebral white matter, ventricles, and whole brain, as well as their first derivatives. Motion regression
includes six parameters plus their derivatives and squares. Further details have been published at Hagler DJ Jr et al. Image
processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage (2019).

HBN: frames with FD > 0.3mm or DVARS > 60 were flagged as censored frames. 1 frame before and 2 frames after these
volumes were flagged as censored frames. Uncensored segments of data lasting fewer than five contiguous frames were also
labeled as censored frames. BOLD runs with over half of the frames censored and runs with max FD > 5mm were removed.
The data was then corrected for susceptibility-induced spatial distortion and regressed out a vector of ones and linear trend,
global signal, six motion correction parameters, averaged ventricular signal, averaged white matter signal, and their temporal
derivatives.

HCP: Each fMRI timepoint has a unique transformation driven by its 6 DOF motion correction matrix. Before regressing out
the 6 motion parameters, gradient nonlinearity distortion correction is applied. After that, EPI distortion correction is applied.
Further details have been published at Glasser MF et al; WU-Minn HCP Consortium. The minimal preprocessing pipelines for
the Human Connectome Project. Neuroimage (2013).

Volume censoring ABCD: Removal of initial frames depends on the type of scanner. On Siemens and Philips scanners, the first eight frames
make up the pre-scan reference, and are not saved as DICOMS. An additional eight frames are discarded as part of the pre-
analysis processing, for a total of 16 initial frames. On GE scanners with software version DV25, the first 12 frames make up
the pre-scan reference. Instead of being discarded, those 12 reference scans are combined into one, and saved as the first
frame, for a total of five initial frames to be discarded as part of the pre-analysis processing for GE DV25 series. On GE
scanners with software version DV26, the pre-scan reference is not retained at all, and a total of 16 initial frames are
discarded for GE DV26 scans as part of the pre-analysis processing. Volumes with FD > 0.3 mm or DVARS > 50, along with one
volume before and two volumes after, were flagged as outliers. Uncensored segments of data having fewer than 5
contiguous volumes were also flagged as outliers and censored. Further details have been published at Hagler DJ Jr et al.
Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage (2019).

HBN: removal of the first eight frames. Frames with FD > 0.3mm or DVARS > 60 were flagged as censored frames. One frame
before and two frames after these volumes were flagged as censored frames. Uncensored segments of data lasting fewer
than five contiguous frames were also labeled as censored frames

HCP: no volume censoring. Further details have been published at Glasser MF et al; WU-Minn HCP Consortium. The minimal
preprocessing pipelines for the Human Connectome Project. Neuroimage (2013).

Statistical modeling & inference

Model type and settings Our study utilized resting-state fMRI data which does not assess task-related contrasts.

Effect(s) tested Our study utilized resting-state fMRI data which does not assess any task-related effects.
Specify type of analysis: [ | whole brain ROl-based [ | Both

ROIs were defined using the Schaefer cortical and Freesurfer subcortical.

Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional
connectivity MRI. Cereb. Cortex 28, 3095—-3114 (2018).

Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the
human brain. Neuron 33, 341-355 (2002).

Anatomical location(s)

Lcoz Yooy

Statistic type for inference Analyses were conducted at the level of resting-state functional connectivity between individual parcels.
(See Eklund et al. 2016)

Correction Where relevant, statistical tests were corrected for multiple comparisons.




Models & analysis

n/a | Involved in the study
|:| & Functional and/or effective connectivity

IZ |:| Graph analysis

|:| & Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Multivariate modeling and predictive analysis

Functional connectivity was measured by Pearson’s r correlations between the mean time series of each pair
of ROIs.

ABCD: we used kernel ridge regression models to predict each behavioral measure from subject-specific
resting-state functional connectivity matrices. To evaluate predictive accuracy, we performed leave-3-site-
clusters-out nested cross-validation for each behavioral measure. At each fold, a different set of 3 site-
categories served as the test set, and the remaining 5 site-categories were used as the training set, resulting
in 56 folds in total. Pearson’s correlation between predicted and actual behavioral scores was used as
accuracy metrics. Statistical significance of prediction accuracy was assessed by permutation testing.

HBN: We used kernel ridge regression models to predict each behavioral measure from subject-specific
resting-state functional connectivity matrices. To evaluate predictive accuracy, we implemented 60 random
initiations of 10-fold nested cross-validation. Pearson’s correlation between predicted and actual behavioral
scores and coefficient of determination were used as accuracy metrics. Statistical significance of prediction
accuracy was assessed by permutation testing.

HCP: We used kernel ridge regression models to predict each behavioral measure from subject-specific
resting-state functional connectivity matrices. To evaluate predictive accuracy, we implemented 60 random
initiations of 10-fold nested cross-validation. Pearson’s correlation between predicted and actual behavioral
scores and coefficient of determination were used as accuracy metrics. Statistical significance of prediction
accuracy was assessed by permutation testing.
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