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ABSTRACT
BACKGROUND: Individual differences in reward processing are central to heightened risk-taking behaviors during
adolescence, but there is inconsistent evidence for the relationship between risk-taking phenotypes and the neural
substrates of these behaviors.
METHODS: Here, we identify latent features of reward in an attempt to provide a unifying framework linking together
aspects of the brain and behavior during early adolescence using a multivariate pattern learning approach. Data (N =
8295; n male = 4190; n female = 4105) were acquired as part of the Adolescent Brain Cognitive Development (ABCD)
Study and included neuroimaging (regional neural activity responses during reward anticipation) and behavioral (e.g.,
impulsivity measures, delay discounting) variables.
RESULTS: We revealed a single latent dimension of reward driven by shared covariation between striatal, thalamic,
and anterior cingulate responses during reward anticipation, negative urgency, and delay discounting behaviors.
Expression of these latent features differed among adolescents with attention-deficit/hyperactivity disorder and
disruptive behavior disorder, compared with those without, and higher expression of these latent features was
negatively associated with multiple dimensions of executive function and cognition.
CONCLUSIONS: These results suggest that cross-domain patterns of anticipatory reward processing linked to
negative features of impulsivity exist in both the brain and in behavior during early adolescence and that these are
representative of 2 commonly diagnosed reward-related psychiatric disorders, attention-deficit/hyperactivity
disorder and disruptive behavior disorder. Furthermore, they provide an explicit baseline from which multivariate
developmental trajectories of reward processes may be tracked in later waves of the ABCD Study and other
developmental cohorts.

https://doi.org/10.1016/j.bpsc.2023.11.008
Alterations in reward processing are central to the presentation
of a wide range of psychiatric disorders and have been theo-
rized to play a central role in risk-seeking behaviors during
development (1–4). Reward processing is a complex, multi-
faceted construct that may be assessed in humans across
behavioral, clinical, and neurobiological domains (5). Such
cross-domain assessment is central to many predominant
research initiatives that seek to link dimensional constructs
(e.g., reward sensitivity) across multiple levels of analyses and
diagnoses (5–8). Despite this, the relationship between many
commonly used measures of impulsivity and reward is not well
established, and integrated frameworks are seldom used
(9–11). In addition, developmental findings from studies that
have attempted to relate risk-seeking behaviors to brain
function have been inconsistent and at times divergent. Prior
work suggests that these inconsistencies may arise from
methodological differences and heterogeneity in risk profile
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definitions across studies (12–14), but it is not yet known
whether they may also be due to the use of traditional uni-
variate analyses as opposed to multivariate alternatives (14),
which are often only possible in large datasets.

Anticipatory reward processing occurs immediately before
response selection and is an important dimension of risk de-
cision making that influences future outcome selection (15).
Deviations from normative anticipatory processing (e.g., hyper-
and hyporesponsiveness) in brain areas implicated in reward
are commonly observed in psychopathologies with impulsive
and risk-seeking behavioral phenotypes including attention-
deficit/hyperactivity disorder (ADHD) (3,4,16) and substance
use (17,18). However, findings have been discrepant at times.
For example, while some studies have reported hyper-
activation across areas of the brain, including the ventral
striatum, during anticipatory reward in ADHD (4), other work
has shown hypoactivation (3,19,20) or no differences (21) in the
logical Psychiatry. Published by Elsevier Inc. All rights reserved. 407
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ventral striatum. These conflicting results may be due in part to
varying levels of trait impulsivity across study populations (3)
and differences between ADHD subtypes. Furthermore,
hypoactivation in the ventral striatum during anticipatory
reward has been observed in adolescent smokers with limited
smoking histories (18), whereas other work has found hyper-
activation in areas of the striatum that may serve as a risk
factor for substance use initiation (17).

Given that findings of reward responsiveness within the
context of impulsive and risk-seeking psychopathologies are
varied and may depend on distinct subtypes within a popula-
tion, integrative approaches using well-powered, large, diverse
samples are warranted. Identifying latent dimensions of reward
and impulsivity across the brain and behavior, particularly
during early adolescence, may shed light on complex systems
subserving risk for common psychiatric disorders and/or
identify common sources of individual variation within reward
systems across development. Here, we therefore take a
multivariate pattern learning approach to identifying latent
features of reward in a large sample of youth, providing a
unified framework linking together multiple aspects of behavior
and the brain. In doing so, we aim to shed light on interactions
across these core domains and inform current understanding
of how the expression of specific reward-related phenotypes
relate to clinical features.

To accomplish the above study aims, we selected relevant
measures collected for the ABCD Study during middle
childhood (preadolescence) corresponding to data collected
at approximately 10 years of age, consistent with landmark
longitudinal work tracking (non–functional magnetic reso-
nance imaging [fMRI]) facets of risk and impulsivity (22). For
our analysis approach, we then selected a statistical
approach capable of identifying associations between 2 sets
of variables, canonical correlation analysis (CCA). CCA is a
data-driven, pattern learning approach for identifying asso-
ciations between sets of variables (i.e., a “many-to-many”
approach) (23). Therefore, it is well suited to the identification
of latent dimensions shared across different data sources
(e.g., fMRI and non-fMRI datasets) and thus optimal for the
proposed work. In the CCA framework, this covariance be-
tween sets of data is commonly referred to as a mode and
represents pairs of latent features of each variable set (23)
(this may be considered as roughly analogous to a compo-
nent when using principal component analysis). These latent
features for each mode serve as unique brain-behavior pro-
files that can be used to identify distinct characteristics of
clinical psychopathology across multiple dimensions
simultaneously.

Based on previous multivariate findings in the ABCD Study
(24–26), we anticipated that CCA would identify one or more
primary modes linking brain and behavioral assessments of
impulsivity and reward and that individual variation in these
modes would be linked to individual differences in related but
separately measured (i.e., not included in the CCA) reward-
related phenotypes, e.g., psychiatric diagnoses of ADHD,
disruptive behavior disorder (DBD), and obsessive-compulsive
disorder (OCD) based on clinical interviews and National In-
stitutes of Health Toolbox measures of executive functioning
(24). Given previous findings from work outside of the ABCD
Study (27,28), we further hypothesized that individual-level
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variation in behavioral measures (e.g., delay discounting, in-
scanner task performance) would be more closely linked to
individual differences in patterns of anticipatory reward pro-
cessing brain responses than self-report and caregiver as-
sessments. Specifically, as has been previously reported in the
ABCD Study and elsewhere, we expected that individual dif-
ferences in ventral and dorsal (25) striatal engagement as well
as anterior cingulate cortex engagement (25) during anticipa-
tory reward processing would be linked to externalizing dis-
orders (e.g., ADHD, DBD) (25) and behavioral (29) measures of
impulsivity such that increased levels of behavioral impulsivity
(e.g., more delay discounting) would be associated with rela-
tively decreased (i.e., blunted) neural response to reward
anticipation (18). Finally, we hypothesized that scores from
identified modes of shared reward covariation would have
more robust associations with clinical measures than tradi-
tional univariate measures (e.g., blood oxygen level–dependent
response within a single region of interest [ROI] correlated with
a single clinical measure of reward).

METHODS AND MATERIALS

ABCD Study Dataset

The ABCD Study is a longitudinal assessment of adolescent
development across 21 sites in the United States with an
enrollment of 11,875 youths (30,31). The ABCD dataset offers
an unprecedented opportunity to explore these relationships
before the onset of significant psychopathology (30,31) in a
large, diverse recruitment sample. This large dataset also af-
fords researchers the opportunity to validate previous findings
that may have been obtained in studies with smaller samples
and to test whether prior effects scale to larger, more hetero-
geneous samples such as the ABCD Study sample. Partici-
pants are assessed annually beginning at age 9/10 years on
behavioral, clinical, and psychosocial measures to facilitate
understanding of adolescent neurodevelopment (32). In addi-
tion, multimodal MRI data are collected every other year (33).
To support our aim of identifying latent brain-behavior di-
mensions of impulsivity and reward among youth prior to
adolescence, data from the baseline collection point and the
year 1 follow-up were used. All data were downloaded from the
Data Exploration and Analysis Portal for the ABCD Study
(https://deap.nimhda.org [website no longer active]) under
National Institute of Mental Health Data Use Agreement #7342
(Release 3.0).

Construction of Datasets to Identify Latent
Features

As described above, CCA is an approach for identifying
dimensional associations between 2 multivariate datasets. The
first variable set (X)—hereafter referred to as the neuroimaging
dataset—contained 32 beta weight estimates corresponding
to neural activation during monetary incentive delay task
(MIDT) reward anticipation within brain regions previously
implicated in reward encoding (see details below and in the
Supplement). The second variable set (Y)—hereafter referred
to as the behavioral dataset—contained 42 well-validated self-
report, parent-report, and behavioral measures relevant to
reward processing and risk-taking behaviors.
pril 2024; 9:407–416 www.sobp.org/BPCNNI
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Neuroimaging Dataset

Neuroimaging reward measures were obtained from the ABCD
Study’s curated data release (i.e., all preprocessing and first-
level modeling was conducted by the ABCD Consortium)
(see the Supplement for details). We selected ROIs that were
defined using FreeSurfer’s ASEG (subcortical) and Desikan-
Killiany (cortical) atlases. ROIs related to reward anticipation
were selected a priori based on previous literature (25) from the
ABCD Study. ROIs included both cortical (anterior and pos-
terior cingulate, orbitofrontal cortex, medial and lateral pre-
frontal cortex, occipital cortex, precentral and superior frontal
gyrus, insula) and subcortical (amygdala, nucleus accumbens,
caudate, putamen, thalamus, ventral diencephalon, hippo-
campus) regions (see Table S2 for details). Poor quality neu-
roimaging data were excluded using the ABCD Recommended
Image Inclusion data file. The ABCD Consortium’s recom-
mended inclusion criteria are specific to each neuroimaging
modality and take into account in-scan behavioral perfor-
mance, repetition times, image quality, and neurological
screenings (33,34). Data from 8295 individuals (male n = 4190,
female n = 4105) were available after excluding individuals
based on ABCD’s MID-specific recommendation (imgincl_mi-
d_include). See Yang and Jernigan (35) for specific consider-
ations, variable names, and thresholds.

Behavioral Dataset

Self-report behavioral measures included the modified
Behavioral Inhibition/Behavioral Activation System (36,37) and
the Urgency-Premeditation-Perseverance-Sensation Seeking-
Positive Urgency (UPPS-P) (38). Caregiver-reported behavioral
measures included all 19 subscales from the Childhood
Behavior Checklist (39,40). Task-based behavioral variables
included indifference scores for all delays assessed during the
delay discounting task (41–43) (see the Supplement for details
and limitations) as well as reaction times and total earnings for
each run of the MIDT (44) (see the Supplement for additional
details). A list of all 42 behavioral measures and their corre-
sponding ABCD Study variable names can be found in
Table S1.

Multivariate Pattern Learning Analyses of
Neuroimaging and Behavioral Data

As described above, we chose a multivariate pattern learning
approach to identifying associations between sets of variables
from fMRI and behavioral domains, i.e., CCA. CCA identifies
common patterns of covariation between 2 multivariate data-
sets without assumptions of directionality [see Wang et al. (23)
for a review]. These common sources of variation are repre-
sented as new latent variables, defined as canonical variates,
which are then used to obtain a canonical correlation. Pairs of
canonical variates are often referred to as modes, with the first
mode explaining the largest amount of variance between the 2
sets of data. Subsequent canonical variate pairs, or modes, are
uncorrelated with and provide less explained variance than all
previous modes. Canonical loadings are obtained for each
variable in both sets and represent their contribution to a given
mode’s explained variance. Our analysis pipeline closely fol-
lowed that of Dinga et al. (45) and is briefly described below. All
statistical analyses were performed in R using custom
Biological Psychiatry: Cognitive Neuroscience and
functions (45) and prepackaged libraries including candisc,
lme4, emmeans, and caret.

Consistent with prior work with ABCD Study data (25), we
controlled for potential confounding effects of participant sex
at birth, interview age, parent income, and highest education
attained by a parent. This was done by residualizing from
each single column separately for both datasets before per-
forming the CCA. Missing data were median-imputed (caret,
R) before carrying out the CCA (cancor, R), consistent with
current recommendations (23) (neuroimaging = 7.3% or
19,986 of 273,735; behavioral = 7.6% or 26,498 of 348,390).
Permutation testing (n = 1000) was performed to confirm the
validity of the test statistics (canonical correlation; Wilks’
lambda) obtained from statistically significant modes (45,46)
by permutating rows of data to obtain a null distribution of
test statistics under the assumption of nonsystematic asso-
ciations between both variable sets. The p value obtained
from this distribution is derived from the proportion of per-
mutations with values less than those obtained in the original,
unshuffled variable sets (47). A nonsignificant permutation
test would indicate that the true CCA model test statistics,
using the original, unshuffled data, may have been obtained
due to chance alone.

Finally, we used 10-fold cross-validation (CV) as an addi-
tional form of model validation to obtain out-of-sample esti-
mations, thereby ensuring that study sites were equally
distributed across each subset, to assess the generalizability
of statistically significant between-canonical-variate correla-
tions (45,47). CV controls for overfitting by testing model pa-
rameters on an independent set of data not used in the model
building (47). For our 10-fold CV, the dataset was randomly
split into a training (90%) and test (10%) set across 10 itera-
tions, and canonical correlations obtained from each iteration
were averaged for a final correlation.
Follow-Up Characterization of Latent Features in
Relation to Other Variables

Linear mixed-effects models (lme4, R) were used to evaluate
associations between individual differences in subject-level
canonical variate expression (projections) mapped to diag-
nostic categories and dimensions of cognitive and executive
functioning (48). Each variate set (i.e., brain and behavior) was
tested separately for robust associations with the diagnostic
and executive function measures. Given the nested structure of
the ABCD Study data, all mixed-effects models included
random nested effects for family and site as recommended in
the ABCD Data Exploration and Analysis Portal. Thus, each
model contained 2 independent variables accounting for the
nested structure and 1 that served as the primary variable of
interest. Significant effects were followed up with Tukey post
hoc analyses (emmeans, R).
Relevance of Canonical Variates to Clinical
Diagnoses

Individual participant expressions for the identified CCA
modes were entered as dependent variables in mixed-effects
models focusing on psychiatric diagnoses with potential
relevance to reward processing as assessed via
Neuroimaging April 2024; 9:407–416 www.sobp.org/BPCNNI 409
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semistructured interview using the Kiddie Schedule for Af-
fective Disorders and Schizophrenia (49). We used the Kiddie
Schedule for Affective Disorders and Schizophrenia to iden-
tify youth with lifetime (i.e., past or present) diagnoses of
disruptive behavioral disorders, which was a combined total
from youths diagnosed with either conduct disorder or
oppositional defiant disorder (DBD; n = 1111) (25), ADHD (n =
1604) (50), and OCD (n = 816) (51). Complete data were
available for 8190 of the 8295 adolescents with good quality
imaging data. To control for multiple comparisons within each
set across the 3 diagnoses (i.e., DBD, ADHD, and OCD), re-
sults were considered significant at p , .017 (.05/3). While we
considered comparing CCA modes between youths with and
without other reward-relevant diagnoses (e.g., bipolar disor-
der), the incidence rates of these other diagnoses were
determined to be too low in the entire ABCD sample (n ,

1000 in the total sample; e.g., n = 505 in the current sample
across all bipolar subtypes). Nonetheless, the inclusion of
DBD, ADHD, and OCD allowed us to evaluate the relevance of
our identified modes to both externalizing (i.e., DBD, ADHD)
and internalizing (i.e., OCD) disorders (52,53). See Section 1.6
in the Supplement for details regarding the relevance of the
canonical variates to executive functioning.

RESULTS

Permutation Testing and 10-Fold CV

As detailed above, we used 2 forms of model validation in our
analysis to ensure robustness and reproducibility: permutation
testing and 10-fold CV (results prior to these steps are pre-
sented in the Supplement). This approach identified a single
primary brain-behavior mode of shared covariation with an
Figure 1. Associations for the reward/impulsivity composite mode. The
hexagonal binning plot displays the correlation between neuroimaging and
behavioral canonical variate expression from mode 1 (reward/impulsivity
composite). The scale bar represents the number of adolescents with the
same association. A significant correlation (r = 0.19 before cross-validation,
r = 0.11 after cross-validation; permutation testing, p , .001) was observed
between variable sets in mode 1 (reward/impulsivity composite).
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effect size greater than r = 0.02 (Figure 1); rMode 1 = 0.11
(Figure S1), rMode 2 # 0.00 (Figure S2), rMode 3 = 0.02,
(Figure S3), rMode 4 # 0.00).

Multivariate Relationships Between Clinical,
Behavioral, and Brain Measures of Reward

Having identified a significant mode confirmed with CV,
hereafter referred to as the reward/impulsivity composite (RIC)
mode, we next characterized the precise relationships be-
tween top contributors in each set of variables. Figure 2 shows
the top 10 canonical loadings corresponding to the behavioral
dataset (Figure 2A) and the neuroimaging dataset (Figure 2B)
for the RIC. These loadings represent the linear correlation
between the RIC and the original variables and exist on a
negative-positive spectrum. Thus, larger absolute values
reflect a greater contribution to the RIC, and a positive
(negative) loading indicates that higher (lower) values of the
variable were associated with a higher RIC score. For example,
if brain region A had a loading of20.05, and brain region B had
a loading of 0.05, both regions would have the same magni-
tude of effect, but in opposite directions, with A associated
with a lower RIC score and B associated with a higher RIC
score on average across participants.

At the behavioral level, multiple performance indices from
the MIDT (i.e., total earnings and reaction times for reward and
neutral trials) and delay discounting scores for short delay trials
(i.e., 6 hours, 1 week) emerged as the primary contributors to
mode 1 in explaining variation in the RIC. Specifically,
decreased MIDT total earnings (i.e., worse overall perfor-
mance), increased reaction times (i.e., slower responding,
which also indicates worse performance) for neutral and pos-
itive trials on the MIDT, and lower indifference scores (i.e.,
higher delay discounting) were associated with higher RIC
scores. At the self-report level, the negative urgency (i.e.,
impulsive actions resulting from negative affect) and lack of
perseverance (inability to complete difficult or time-consuming
tasks) subscales of the UPPS-P emerged as the primary
contributors, with higher UPPS-P scores being associated with
higher RIC scores.

At the neurobiological level, lower task-evoked patterns of
regional brain activation consistently emerged as primary
contributors to RIC scores. Specifically, during reward
anticipation, decreased activations within the bilateral
caudate, bilateral putamen, bilateral thalamus, and bilateral
anterior cingulate were all associated with higher RIC scores
(see Figure S4 for visualizations). Taken together with findings
from behavioral and self-report domains, these data indicate
that individuals with higher (vs. lower) RIC scores were
characterized by increased self-reported impulsivity, impaired
reward task performance, steeper short-term delay dis-
counting slopes (i.e., preferring shorter, smaller rewards), and
blunted cortico-striatal-thalamic activation during reward
anticipation.

Univariate Comparisons

As described above, our multivariate pattern learning
approach identified a primary mode, the RIC, that accounted
for a subtle but statistically significant amount of variance
(rMode 1 = 0.11). For comparison, we also computed univariate
pril 2024; 9:407–416 www.sobp.org/BPCNNI
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A Figure 2. Reward/impulsivity composite top 10
loadings. Variable loadings from each set of data
in mode 1 (reward/impulsivity composite) are
shown. Loadings represent the top-ranked vari-
ables, expressed as the linear correlation between
the canonical variates and the original variables
that contribute to the common covariation be-
tween the (A) behavioral and (B) neuroimaging
datasets. L, left; MID, monetary incentive delay; R,
right; UPPS-P, Urgency-Premeditation-Persever-
ance-Sensation Seeking-Positive Urgency.
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effect sizes for the highest loaded neural measure of reward
(right caudate nucleus) and the highest loaded clinical measure
(UPPS-P) using the original variables. Results of this univariate
test (Figure S5) indicated much smaller effect sizes for uni-
variate associations of the original variables, with maximum r
values of w0.03. Having established the increased exploratory
power of our multivariate approach, we went on to explore the
relationship between individual differences in RIC scores,
potentially relevant psychiatric diagnoses, and executive
functioning indices.
Biological Psychiatry: Cognitive Neuroscience and
Relationships to Clinical Diagnoses and Executive
Functioning Measures

Adolescents diagnosed with DBD (n = 1111, m = 0.010, s =
0.067) had significantly higher behavioral dataset canonical
variate expressions compared with adolescents without DBD
diagnosis (n = 7079, m = 20.006, s = 0.062, p , .001, d =
0.122) (Figure 3A; see Figure S6 for violin plots). In addition,
adolescents with a history of an ADHD diagnosis (n = 1604, m =
0.225, s = 0.065) had significantly higher behavioral dataset
Neuroimaging April 2024; 9:407–416 www.sobp.org/BPCNNI 411
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Figure 3. Associations between canonical
variate expression and clinical features. Panels
(A–F) show dotplots (6 standard error calculated
without random effects of family nested within
study site) of (A–C) mean behavioral canonical
variate expression and (D–F) mean neuro-
imaging canonical variate expression for the
presence or absence of the following clinical
diagnoses: (A, D) disruptive behavior disorder
(DBD); (B, E) attention-deficit/hyperactivity dis-
order (ADHD); and (C, F) obsessive-compulsive
disorder (OCD). Asterisks (*) represent signifi-
cant mean differences (**p # .01, ***p # .001). A
significant increase in behavioral canonical
variate expression was observed in adolescents
with a diagnosis of (A) DBD and (B) ADHD
compared to without a DBD or an ADHD diag-
nosis. Adolescents with (E) ADHD had signifi-
cantly higher neuroimaging canonical variate
expression than adolescents without ADHD.
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variate scores than adolescents without a history of an ADHD
diagnosis (n = 6586, m = 20.047, s = 0.062, p , .001, d =
0.317) (Figure 3B) (see the Supplement for unchanged results
after addition of stimulant medication status to the ADHD
model). No difference was observed between adolescents with
(n = 816) and without an OCD diagnosis (n = 7374, p = .873)
(Figure 3C). For the neuroimaging dataset, adolescents diag-
nosed with ADHD (n = 1604, m = 0.057, s = 0.029) had
significantly higher canonical variate expressions than those
without (n = 6586, m = 20.013, s = 0.019, p = .012, d = 0.071)
(Figure 3E). No differences were observed between the neu-
roimaging dataset variate scores and diagnoses of DBD (n =
1111, p = .462) or OCD (n = 816, p = .99). These significant
effects remained after including the covariates that were used
to residualize the data prior to running the CCA (i.e., sex at
birth, interview age, parent income, and highest education) and
suggests that these relationships may be robust to individual
differences in core demographics.

Significant correlations were observed between the behav-
ioral and neuroimaging canonical variate expressions and the
National Institutes of Health toolbox cognitive performance
(Figure S7) such that higher variate expressions (i.e., higher
behavioral impulsivity and lower anticipatory brain response)
were associated with worse cognitive task performance.
DISCUSSION

Using a conservative CV approach and permutation testing,
our data-driven analysis indicated that individual differences in
specific behavioral domains—performance on the MIDT, delay
412 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
discounting, lack of perseverance, and negative urgency—
covaried with individual differences in anticipatory reward
processing within specific, primarily subcortical, neural sys-
tems including the thalamus, caudate, putamen, and anterior
cingulate. Notably, this constellation of measures suggests
that low neural response to reward anticipation is more closely
linked to behavioral indices of reward sensitivity (e.g., slower
reaction times to obtain rewards or avoid losses, delay dis-
counting) and to self-report indices of negative aspects of
impulsivity (i.e., negative urgency, lack of perseverance) than
to more classic, positive aspects of impulsivity (e.g., sensation
seeking, positive urgency, the modified Behavioral Inhibition/
Behavioral Activation System Scales) (see the Supplement for
additional discussion). These results further indicate that such
behavioral facets of impulsivity are more closely linked to in-
dividual differences in primarily bottom-up subcortical brain
regions than to top-down cortical regions. Together with the
work by Hawes et al. (25), this suggests that anticipatory
reward processing during early adolescence may relate more
to externalizing phenotypes than clinical assessments such as
the modified Behavioral Inhibition/Behavioral Activation Sys-
tem Scales, Child Behavior Checklist, and in part the UPPS-P.
Longitudinal follow-ups will help determine whether the
construct that we identified is consistent across development
or whether there are others that emerge.

At the neural level, primarily subcortical brain regions—
including the caudate and putamen—emerged as the primary
drivers of the RIC, consistent with these regions’ critical roles
in reward processing (54–56) and with developmental models
emphasizing earlier maturation of subcortical versus cortical
pril 2024; 9:407–416 www.sobp.org/BPCNNI
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structures (57). Among the cortical ROIs considered, only the
anterior cingulate cortex emerged as a primary contributor to
the RIC. The negative loadings for all brain-based loadings
suggest that decreased activation is associated with increased
RIC scores. This relationship was further evidenced by our
validation analysis findings for adolescents with ADHD and
supports previous findings, particularly within the ventral
striatum (19). Further discussion of these brain regions and
their relevance to the RIC is provided in the Supplement.

Follow-up analyses comparing individuals with and without
common reward-related psychiatric disorders indicated
significantly increased scores for both brain- and behavior-
based components of the RIC among youth with a history of
ADHD. Given the negative loadings of variables in the brain-
based components, this indicates that adolescents with
ADHD have blunted activation in areas of reward, consistent
with prior work in smaller samples and using univariate ap-
proaches. In addition, the direction of the loadings for the
behavior-based set suggests that a higher severity of symp-
toms, or worse performance, on the tasks and assessments in
this set together constitute a phenotype of reward and
impulsivity that is associated with ADHD. This interpretation is
supported by previous work with both adolescents (19) and
adults (58) with ADHD that found striatal hypoactivation to be
associated with greater behavioral symptoms of impulsivity.
Importantly, our replication using such a large sample in-
creases the validity of these earlier findings that were observed
in much smaller samples. This replication using a multivariate
approach also provides a foundation for studies using multi-
variate analysis by demonstrating its utility in identifying latent
features of psychopathology that simultaneously link aspects
of the brain and behavior.

In contrast, while youth with a DBD diagnosis had
increased expressions of behavioral measures, no differences
in brain-based components of the RIC were found between
youth with and without DBD. Despite differences in analytic
strategy, the absence of brain-based differences in reward
activation between youth with and without DBD is generally
consistent with results from multivariate latent reward
network models recently reported by Hawes et al. (25). For
example, these authors found significant decreases in antic-
ipatory reward network activation only in youth diagnosed
with DBD compared with healthy control participants and
those with both DBD and callous-unemotional traits. Youth
with DBD and callous-unemotional traits did not display
reduced mean-level reward network factor activation during
anticipatory contrasts compared with healthy control partici-
pants. Our sample presented here was not restricted only to
individuals with DBD and more closely reflects a heteroge-
neous population that includes youth with comorbid disor-
ders (e.g., callous traits). Nonetheless, Hawes et al. observed
reduced activation in the dorsal anterior cingulate cortex in
both adolescents with DBD only and adolescents with DBD
and callous-unemotional traits compared with healthy control
participants in their univariate region-of-interest analysis.
While our brain-based validation analysis was not significant
for adolescents with DBD, the anterior cingulate was the
highest loaded cortical region in our CCA, which further
suggests that this area may be important in the development
of adolescent reward-related psychopathology.
Biological Psychiatry: Cognitive Neuroscience and
Our study has several limitations. First, effect size esti-
mates were modest. However, recent studies have begun to
challenge the definition of what constitutes a small or modest
effect size, particularly in the context of big data initiatives
such as the ABCD Study (59–61). This modest effect size
may also be due in part to heterogeneity within our clinical
sample that is related to overreporting of clinical diagnoses
on self-report assessments compared with clinician in-
terviews. Nonetheless, small effects are also useful for
developing novel hypotheses and can be more important at
the population level (62). Second, although our multivariate
pattern learning strategy was entirely data driven, it was
constrained by our a priori selection of assessments and
brain regions with documented relevance to reward.
Furthermore, we chose to only include neural activation data
from reward versus neutral anticipatory contrasts of the
MIDT, and therefore, our findings should only be considered
in the context of anticipatory reward processing. While we
only considered ADHD, DBDs, and OCD in our follow-up
analyses, the rates of other clinical diagnoses are low.
Thus, it will be imperative to assess RIC expression across
other disorders (i.e., depression) as the prevalence rates in-
crease in future ABCD Study releases. We also did not
control for other developmental factors such as differences in
pubertal status in our analysis. However, recent work sug-
gests that at baseline, most adolescents have not yet entered
puberty (63), and thus, this variable may be important to
consider at later time points. While we considered an
exhaustive approach (i.e., inclusion of all possible variables
as in our prior work) (64), we ultimately decided to combine
our data-driven analysis with theory-based variable selection.
This was because we were interested in determining whether
commonly used indices of reward taken from multiple levels
of analyses would in fact naturally covary together, as
anticipated by common translational approaches such as
Research Domain Criteria (5–8). While future work should
consider a truly exhaustive approach, it is important to note
that this will involve inclusion of thousands of variables and
significant computational resources. To our knowledge, the
current analysis nonetheless represents the largest data-
driven, multivariate assessment of reward processing met-
rics across behavioral, clinical, and neuroimaging domains
conducted to date. Finally, it is important to acknowledge the
limitations of the ABCD Study’s imaging data. Although we
excluded participants from our analyses based on the ABCD
Consortium’s neuroimaging exclusion criteria, recent work
has called the reliability and stability of the task-based fMRI
data into question, particularly when considering longitudinal
analyses (65). In addition, the ABCD Consortium uses
multiband acquisition, which may produce less reliable
mesolimbic activity measurements (66). As future waves of
imaging data become available, it will be important to eval-
uate the reliability of mesolimbic activity in relation to specific
psychopathologies.
Conclusions

The current study used a multivariate statistical approach to
identify relationships between behavioral and neuroimaging
assessments related to reward. Our results suggest that
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significant patterns emerge in both the brain and behavior
during early adolescence that are representative of reward-
related psychiatric disorders such as ADHD. These findings
may have significant implications for the treatment of reward-
related disorders because they highlight important pheno-
types (e.g., discounting, negative urgency, perseverance) that
may act as intervention targets and are robust to core de-
mographic variables. Importantly, our multivariate analysis
allowed for simultaneous brain-based findings that take into
account the relationship between all included regions (vs.
single regions in isolation), thereby revealing the neural corre-
lates of these phenotypes. Future waves of ABCD Study data
will help determine whether these specific phenotypes are
stable over time and how these patterns of reward relate to
other disorders including the development of other common
reward-related disorders and behaviors (e.g., substance use
initiation, bipolar disorder, depression). More generally, these
data have important implications for translational work in
humans because they highlight the importance of multivariate
approaches for understanding unified frameworks of brain-
behavior relationships and suggest that reliance on univariate
analyses to explain complex, interconnected phenomena may
limit our potential to identify latent features of human psy-
chopathology. Thus, it will be important for future work to
consider building upon earlier studies that have relied on uni-
variate frameworks. We believe that our comparisons here
provide a foundation for future extensions and generalizations
of earlier work. Furthermore, they provide an implicit baseline
from which the development of the newly identified RIC may be
tracked in future waves of the ABCD Study.
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