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N E U R O S C I E N C E

Functional brain networks are associated with both sex 
and gender in children
Elvisha Dhamala1,2*, Dani S. Bassett3,4, B.T. Thomas Yeo5, Avram J. Holmes6

Sex and gender are associated with human behavior throughout the life span and across health and disease, but 
whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in 
children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, 
visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are 
more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another 
not only in society but also in biology.

INTRODUCTION
Over the last two decades, the interactions between sex, neurobiol-
ogy, and behavior have been extensively researched (1–9). However, 
these studies often report contradictory findings and fail to replicate 
(7, 10). The growing literature on sex differences (11) and the lack of 
reproducibility of many of those reported differences (7) suggest a 
potential bias and/or misunderstanding in how we study, interpret, 
and report findings related to sex. More recently, researchers have 
begun to question whether these observed differences between males 
and females are driven by biology (e.g., sex) or whether they are a 
manifestation of social constructs (e.g., gender) (7, 10). The reality is 
more complicated in that sex and gender are both influenced by bio-
logical and social factors (12, 13). Critically, associations between 
biological and social factors are intertwined and reciprocal in nature. 
As an example, personal experiences across the life span are shaped 
by an individual’s sex and gender as well as the sociocultural envi-
ronment they are embedded within; complex relationships converge 
to influence brain organization and function. Here, we use the term 
“sex” to indicate features of an individual’s physical anatomy, physiology, 
genetics, and/or hormones at birth, and we use the term “gender” to 
indicate features of an individual’s attitude, feelings, and behaviors 
(14). For a detailed discussion of these terms and the complex rela-
tionships that can exist between sex and gender, we refer readers to 
our Supplementary Text. Biomedical research thus far has princi-
pally focused on understanding the influence of sex on brain and 
behavior. As such, the contributions of gender are largely unknown.

A fundamental aspect of our human experience is our sex and 
gender, how we perceive them, and how they are perceived by others. 
Sex and gender can explain our behavior, and influence our health 
and disease throughout the life span. Women, people assigned fe-
male at birth (AFAB), and sex/gender minorities have historically 
been excluded from biomedical research (15, 16). Consequently, 
this group of individuals is more likely to be underdiagnosed or 
misdiagnosed for common brain disorders [e.g., attention-deficit/
hyperactivity disorder (ADHD)] and experience adverse effects from 

treatment interventions (e.g., medications). In the brain sciences, there 
exist sex and gender differences in the prevalence and expression of 
psychiatric illnesses and treatment-seeking behaviors. AFAB people 
are more likely to meet criteria for mood and anxiety disorders, while 
people assigned male at birth (AMAB) are more likely to be diag-
nosed with substance use and attention deficit disorders (17). AFAB 
people are more likely to report mood problems and seek treatment 
for mental illnesses (18). In recent years, researchers have sought to 
relate these differences in the presentation of psychiatric illnesses to 
patterns of functional brain organization (5, 19–24). However, work 
in this area has largely operated with the assumption that the ob-
served differences are a product of sex, not gender. Moreover, studies 
examining the neuroscience of sex and gender have historically sought 
to identify basic biological differences between (binary) sexes. Sex and 
gender are often conflated in biomedical research based on the incor-
rect assumption that they are determined by the same factors and that 
the two are directly related to one another (25). However, sex and 
gender are complex multidimensional constructs associated with a 
host of biological, social, and environmental factors. An understand-
ing of the unique functional brain correlates of sex and gender is 
essential for the study of brain-related illnesses that exhibit differences 
across males and females.

Here, we sought to characterize and disentangle the neurobio-
logical underpinnings of sex and gender in children. To do so, we 
quantified the functional networks associated with assigned sex and 
gender in a large sample of children from the Adolescent Brain Cog-
nitive Development (ABCD) Study (n = 4757) using brain-based 
predictions. Of note, we use the term “prediction” here in a machine 
learning context to refer to the output of the algorithms that estimate 
an individual’s sex or gender. First, using brain-based predictive 
modeling approaches, we demonstrate that both sex and gender are 
associated with individual variability in functional connectivity. 
Next, evaluating whether shared or distinct functional connections 
are associated with sex and gender, we determine that although there 
is some overlap in the associations, sex and gender are uniquely rep-
resented in the brain. Finally, characterizing the functional network 
correlates of sex and gender, we reveal that sex is preferentially 
associated with somatomotor, visual, control, and limbic networks, 
while the network correlates of gender are more distributed through-
out the brain. Collectively, these results suggest that sex and gender 
are both associated with individual functional connectivity and these 
associations may underlie the sex and gender differences that exist 
in brain-related illnesses.
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RESULTS
Children AMAB exhibit greater sex congruence in their 
genders than children AFAB
Leveraging neuroimaging data from the ABCD Study (26) (4757 
children, 2315 females, 9 to 10 years old) at baseline, and self- and 
parent-reported gender data at the 1-year follow-up time point, we 
first evaluated sex differences in gender scores (Fig. 1A for all par-
ticipants, fig. S1 for data split by site). Self-reported gender scores 
measured felt-gender, gender expression, and gender contentedness, 
while parent-reported gender scores measured sex-typed behavior 
during play and gender dysphoria (table S1). Across both self-report 
and parent-report gender measures, higher scores indicate greater 
sex congruence, which refers to the extent to which an individual’s 
gender aligns with their assigned sex. Self- and parent-reported gen-
der scores were more similar in AFAB children (Spearman correlation, 
ρ = 0.173, P < 1.00 × 10−10) than in AMAB children (ρ = 0.108,
P = 8.97 × 10−5), and AMAB children exhibited greater sex con-
gruence than AFAB children for both parent-report (Mann-Whitney 
U statistic, U = 1.36 × 106, P < 1.00 × 10−10) and self-report (U =

2.13 × 106, P < 1.00 × 10−10) measures. These trends are in line with 
those previously reported in the entire ABCD sample (14), indicat-
ing that the subsample with neuroimaging data used in these analyses 
is representative of the full cohort. Extant literature suggests that 
AMAB children feel more pressure to conform to gender norms 
than AFAB children (27, 28). This may, in part, explain our results, 
in which AMAB children report stronger sex-congruent genders 
than AFAB children.

Sex and gender are associated with individual variability in 
functional connectivity
Using cross-validated linear ridge regression models, we quantified 
the associations between functional connectivity and sex as well as 
gender. Across all individuals, 59.27% (P < 1.00 × 10−10; prediction
accuracy, r = 0.77, P < 1.00 × 10−10) of the variance in sex, 55.37%
(P < 1.00 × 10−10; r = 0.75, P < 1.00 × 10−10) of the variance in
self-reported gender, and 56.30% (P  <  1.00 × 10−10; r  =  0.75,
P < 1.00 × 10−10) of the variance in parent-reported gender were
associated with functional connectivity (Fig. 1B). These predictions 

A Distribution of gender conformity with sex scores

B Performance metrics for sex and gender prediction across all participants

C Performance metrics for sex-speci�c gender prediction

Fig. 1. Functional connectivity is associated with assigned sex and gender. (A) Violin plots display the distribution of the self- and parent-reported gender confor-
mity with sex scores for AFAB (red) and AMAB (blue) children. (B) Explained variance (%) and prediction accuracy (correlation between observed and predicted values) 
obtained from the models trained to predict sex (green) and gender (orange, purple) across all participants. Black asterisks (*) indicate that the model performed signifi-
cantly better than the null models (P < 0.05). (C) Explained variance (%) and prediction accuracy (correlation between observed and predicted values) obtained from the 
models trained to predict self- (blue) and parent-reported (orange) gender. Black asterisks (*) denote that the model performed significantly better than the null models 
(corrected P < 0.05). For all violin plots, the shape indicates the entire distribution of values; the dashed lines indicate the median; and the dotted lines indicate the inter-
quartile range. AFAB, assigned female at birth; AMAB, assigned male at birth.
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of gender across all individuals are likely to be confounded by sex 
(and vice versa), as sex and gender were associated with functional 
connectivity are undeniably related to one another.

To further disentangle the functional correlates of sex from those 
of gender, we quantified sex-specific associations between functional 
connectivity and gender. These models were trained separately in 
AFAB or AMAB children to predict gender. Our models did not suc-
cessfully predict the self-reported gender scores in either sex (all 
corrected P values >0.05). On the other hand, 0.56% (corrected P = 
0.037; r = 0.08, corrected P = 0.033) and 0.55% (corrected P = 0.037; 
r = 0.08, corrected P = 0.033) of the variance in parent-reported gen-
der scores in AFAB and AMAB individuals, respectively, were associ-
ated with functional connectivity (Fig. 1C). Detailed model performance 
metrics and corrected P values are reported in Table 1. As a control, 
we also evaluated the extent to which functional connectivity was as-
sociated with sex in approximately half of the participants (correspond-
ing roughly to the sample size used for the sex-specific gender analyses). 
Here, 54.14% (P < 1.00 × 10−10; r = 0.74, P < 1.00 × 10−10) of the 
variance in sex was associated with functional connectivity. This 
suggests that the differences in reported results between the sex and 
gender predictions are not driven by sample size alone. Moreover, 
multiple studies have shown that functional connectivity is influenced 
by sex (20, 29, 30). Here we replicate those findings in children and 
further demonstrate that functional connectivity is also associated 
with parental reports of their children’s gender.

Shared and unique functional networks are associated with 
sex and gender in children
The Haufe transformation (31) was applied to the feature weights ex-
tracted from the models to increase their interpretability and reliabil-
ity (32), and the absolute Haufe-transformed weights were averaged 
to compute a mean absolute feature importance score (at the regional 
pairwise level). We evaluated the correlations between the features 
extracted from the different prediction models (Fig. 2A). For the sex-
independent gender prediction models, functional connections asso-
ciated with sex largely overlapped with those associated with gender 
(rself-report = 1.00, rparent-report = 0.99), suggesting that models trained 
to capture variability in gender are capturing variance related to sex, 
and vice versa. For the sex-specific models, functional connections 
associated with sex were distinct from the functional connections as-
sociated with gender in AFAB (rself-report = 0.15, rparent-report = 0.13) 
and AMAB (rself-report = 0.12, rparent-report = 0.11) children. Functional 
connections associated with gender were weakly correlated across the 

sexes for the self-report measures (r  =  0.30) but distinct for the 
parent-report measures (r = 0.18). Finally, functional connections as-
sociated with gender were moderately correlated across the self-report 
and parent-report measures in AFAB children (r = 0.46) but uncor-
related in AMAB children (r = 0.19). These results suggest that sex 
and gender, although strongly correlated, are uniquely represented in 
functional networks.

Finally, we established the network-level functional correlates of 
sex and gender by mapping regional feature weights onto 17 large-
scale cortical networks (33) and one noncortical network (Fig. 2B). 
Here, we focus our analyses on the overlap between the functional cor-
relates of sex and of sex-specific parent-reported measures of gender, 
as the sex-independent correlates of self- and parent-reported mea-
sures of gender (fig. S2) were nearly identical to those of sex, and the 
functional correlates of sex-specific self-reported measures (fig. S3) 
correspond to models that did not perform better than chance. We 
evaluated the correlations between the network-level feature weights 
shown in Fig. 2B. The network-level connections associated with 
gender were moderately correlated across the sexes (r = 0.55). This 
relationship was stronger than those observed between the network 
correlates of sex and gender in AFAB (r = 0.31) or AMAB (r = 0.15) 
children. This further demonstrates that the functional network cor-
relates of sex are distinct from those of gender. These results also suggest 
that there are both shared and unique correlates of gender across 
the sexes.

Functional network correlates of sex were largely found in the 
somatomotor, visual, control, and limbic networks, while the net-
work correlates of gender were more dispersed throughout the 
cortical networks. In AFAB children, network correlates of gender 
largely involved connections within and between temporal parietal, 
limbic, dorsal/ventral attention, and somatomotor networks. In 
AMAB children, network correlates of gender included connections 
within and between temporal parietal, default mode, limbic, dorsal/
ventral attention, somatomotor, and visual networks. On the basis 
of these findings, we can speculate that distinct functional connec-
tions within/between unimodal and heteromodal networks are 
associated with sex and gender.

DISCUSSION
Sex and gender differences in biology and behavior are tied to health 
outcomes throughout the life span (34). An understanding of the 
neurobiological underpinnings of sex and gender is crucial for the 

Table 1. Detailed performance metrics from models trained to predict sex and gender. Performance metrics from models trained to predict sex or gender 
based on functional connectivity. For explained variance (%) and prediction accuracy (correlation between observed and predicted measures), mean ± SD 
performance measured in the hold-out test set across the 100 train/test splits are shown. Model performance metrics were compared to those obtained from 
null distributions using an exact test for differences to evaluate whether they performed better than chance. Corrected P values for those comparisons are 
denoted in parentheses. Models that performed better than chance are indicated by bold type. AFAB, assigned female at birth; AMAB, assigned male at birth.

Data

Explained variance (%) Prediction accuracy

AFAB AMAB AFAB AMAB

Assigned sex 59.273 ± 1.077 (<1.00 × 10−10) 0.771 ± 0.007 (<1.00 × 10−10)

Gender, self-report 55.373 ± 1.300 (<1.00 × 10−10) 0.745 ± 0.009 (<1.00 × 10−10)

Gender, parent-report 56.297 ± 1.170 (<1.00 × 10−10) 0.752 ± 0.008 (<1.00 × 10−10)

Gender, self-report 0.393 ± 0.693 (0.162) 0.077 ± 0.483 (0.198) 0.068 ± 0.044 (0.136) 0.044 ± 0.033 (0.147)

Gender, parent-report 0.563 ± 0.596 (0.037) 0.551 ± 0.557 (0.037) 0.081 ± 0.038 (0.033) 0.078 ± 0.037 (0.033)
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A Correlations between predictive feature weights
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Fig. 2. Distinct functional networks are associated with assigned sex and gender. (A) Full correlation coefficient between Haufe-transformed absolute pairwise re-
gional feature weights from distinct models trained to predict assigned sex and gender. Models trained to predict gender were either trained across all participants (all), 
only in AFAB children (AFAB), or only in AMAB children (AMAB). Warmer colors indicate a stronger correlation between the feature weights. (B) Regional pairwise feature 
weights were summarized to a network level by mapping the Schaefer 400 cortical parcels to 17 large-scale cortical networks and assigning the noncortical regions to a 
single noncortical network (top left). Cortical network image reproduced with permission from https://doi.org/10.6084/m9.figshare.10062482.v1 and noncortical net-
work image reproduced with permission from https://doi.org/10.6084/m9.figshare.10063016.v1 under a CC BY 4.0 license. Associations between functional network 
connectivity and sex (top right) and parent-reported gender expression (bottom) are shown as per the color map, where warmer colors indicate stronger correlations and 
cooler colors indicate weaker correlations. AFAB, assigned female at birth; AMAB, assigned male at birth.
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subsequent identification of how sex and gender influence health 
and illness and the development of sex-specific and gender-oriented 
diagnostic and prognostic tools (13, 35). Here, we demonstrate that 
functional connectivity is associated with both sex and parent-
reported gender.

Our predictions of gender (beyond sex) are far less accurate than 
predictions of sex or gender alone, suggesting that gender may be a 
more complex construct that is not as clearly represented in func-
tional connectivity patterns. Gender is a multidimensional construct 
that encompasses an individual’s internal identity and their external 
interactions and behaviors, both of which are extremely difficult to 
quantify. Critically, the self-report measure used here assesses sex-
congruent and sex-incongruent felt-gender, along with gender ex-
pression and gender contentedness, while the parent-report measure 
assesses sex-congruent and sex-incongruent behavior during play 
and gender dysphoria in youth. As such, they seek to capture dis-
tinct aspects of an individual’s gender. Here, we observe limited 
population-level variability in the self-reported scores relative to the 
parent-reported scores. However, the two measures are significantly, 
albeit weakly, correlated. Our inability to capture meaningful asso-
ciations between self-reported gender and functional connectivity 
may be due to the limited variability in those measures and/or due 
to inherent differences in the dimensions of gender captured in the 
self- and parent-reported measures. However, several other factors 
may also contribute to these results. Sex and gender are highly cor-
related in this dataset; thus, it is unsurprising that the proportion of 
variance in gender (unrelated to sex) that is associated with func-
tional connectivity is rather small. An alternative explanation is that 
the influences of sex on the brain are more stable across individu-
als whereas the influences of gender are more variable. Gender iden-
tity and expression are fluid, and this fluidity may be especially 
pronounced in nonbinary and transgender individuals. This dy-
namic nature in gender may be reflected in the network correlates, 
thus making it difficult to capture using cross-sectional predictive 
modeling approaches. Nonetheless, our detection of significant as-
sociations between functional connectivity and parent-reported 
gender demonstrates that gender does influence the organization 
of brain networks in children.

Functional brain networks mature nonuniformly across cortical 
networks (36–38) and sexes (2) during adolescence. Unimodal sen-
sory networks (e.g., visual, auditory, and somatosensory) responsible 
for responding to stimuli within one sensory modality mature first, 
followed by heteromodal association networks (e.g., dorsal attention, 
ventral attention, and control) involved in higher-order cognitive 
and social processes. Here, we find that both unimodal and hetero-
modal networks are involved in sex and gender predictions, suggest-
ing that the influences of sex and gender on the brain are widespread. 
Moreover, a distinct set of functional connections is associated with 
gender (after accounting for sex). Sex is more strongly associated 
with connectivity within/between somatomotor, visual, control, and 
limbic networks while the network correlates of gender are more dis-
persed throughout the cortex. Associations between functional con-
nectivity and gender somewhat overlap between the sexes but also 
exhibit critical differences. In AFAB children, the strongest associa-
tions were observed in the temporal parietal and attention networks, 
whereas in AMAB children, we see a more dispersed pattern of as-
sociation involving several heteromodal networks as well as visual 
and somatomotor networks. Together, these findings suggest that the 
functional correlates of sex are distinct from the functional correlates 

of gender, and the unique multidimensional constructs that com-
prise gender are differentially associated with functional connectivi-
ty patterns in AFAB and AMAB children. As such, sex and gender 
must both be studied concurrently to fully capture the differences 
and similarities that exist between males and females, between boys 
and girls, and between other genders.

These findings are subject to several limitations. First, sex is not 
binary. However, in the ABCD sample analyzed here, all partici-
pants reported their sex as either female or male. As such, we only 
considered the neural correlates of binary sex and the correlates of 
gender in AFAB and AMAB children. Additional analyses in a more 
sex- and gender-diverse sample may reveal further insights. Second, 
we considered gender on a continuum, rather than a binary variable, 
to represent its true nature and to prevent the loss of valuable infor-
mation pertaining to individual differences in gender (39). Howev-
er, there was limited variability in the self-reported gender data. This 
may, in part, have restricted our ability to capture accurate relation-
ships between functional connectivity and gender and to disentan-
gle the network correlates of sex and gender. Subsequent analyses in 
a dataset enriched in individuals who exhibit greater gender non-
conformity are likely to have higher power to detect these relation-
ships. Relatedly, analyses of subgroups of individuals with varying 
levels of gender conformity could reveal the extent to which func-
tional network correlates of gender are consistent across the popula-
tion. Third, these analyses were performed in a relatively young 
cohort. As these children undergo puberty, their understanding and 
expression of their gender can change appreciably. This change will 
be paralleled by structural and functional brain maturation (37, 38, 
40). As such, it will be critical to consider how the interplay between 
brain maturation and puberty influence individual differences in 
gender. Future analyses should seek to evaluate how these function-
al network representations of sex and gender change during puberty 
and throughout the transition from childhood to adolescence as well 
as across adulthood. Fourth, gender was assessed at a single time point, 
using a set of questions that assumed a static form of gender identity 
and expression. Future work across multiple time points could instead 
use questions that allow for the assessment of gender fluidity over a 
range of time scales. Fifth, gender is influenced by local cultural 
norms and shared societal experiences. The ABCD dataset was col-
lected entirely in the United States and is not representative of the 
global population (41). Subsequent analyses should investigate whether 
similar relationships exist in other countries. Finally, we used a whole 
brain approach consistent with previous work (19, 22, 23, 42–50). 
However, the limbic network, which exhibits sex differences (51–53) 
and is implicated in complex behaviors (54), is prone to signal drop-
out and has lower test-retest reliability than other networks (55). 
Although we implemented strict quality control measures, we can-
not rule out that inherent differences in the signal-to-noise ratio 
throughout the brain did not influence our predictions and/or inter-
pretations, and this should be assessed in future analyses.

Our analyses reveal potential neurobiological correlates for sex 
and gender in children, suggesting that complex and nuanced bio-
logical and environmental factors jointly influence brain organiza-
tion. However, these results do not provide evidence for gender 
essentialism, and we strongly caution against any simplifications or 
(mis)interpretations of this work to suggest otherwise. We refer 
readers to our Supplementary Text for more information.

A comprehensive understanding of the neurobiological corre-
lates of sex and gender is necessary if we are to understand health 
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and disease in sex- and gender-diverse samples. Here, we identify 
the distinct functional network correlates of assigned sex and gen-
der expression in the developing human brain. How these correlates 
may be maintained or altered during development and adulthood, 
and how they may relate to genderfluid experiences at any age, re-
mains to be established.

MATERIALS AND METHODS
Dataset
The ABCD dataset is a large community-based sample of children 
and adolescents who were assessed on a comprehensive set of neuro-
imaging, behavioral, developmental, and psychiatric batteries (26). 
Here, we used minimally preprocessed neuroimaging data acquired 
at the baseline time point along with self- and parent-reported gen-
der data at the 1-year follow-up time point from the National Insti-
tutes of Mental Health (NIMH) Data Archive for ABCD Release 
2.0.1. Magnetic resonance (MR) images were acquired across 21 sites 
in the United States using harmonized protocols for GE and Siemens 
scanners. In line with our previous work (44, 45), we used exclusion 
criteria to ensure quality control (fig. S4). For the T1 data, we re-
moved individuals who did not pass recon-all quality control (56). 
For the functional connectivity data, we excluded functional runs 
with boundary-based registration (BBR) costs greater than 0.6. Further, 
we censored volumes with framewise displacement (FD)> 0.3 mm 
or voxel-wise differentiated signal variance (DVARS) > 50, along with 
one volume before and two volumes after. We also removed uncen-
sored segments of data containing fewer than five contiguous volumes 
(57, 58). We removed functional runs with more than half of their 
volumes censored and/or max FD > 5 mm. We also excluded indi-
viduals who did not have at least 4 min of data. As recommended by 
the ABCD consortium, we excluded individuals who were scanned us-
ing Philips scanners due to incorrect preprocessing (https://github.
com/ABCD-STUDY/fMRI-cleanup). We also excluded individuals 
who did not have all behavioral (e.g., gender) data or were related to 
one another to prevent unintended biases due to inherent heritability 
in neurobiological and/or behavioral measures. Finally, we removed 
data from sites with fewer than 50 individuals. Our final sample com-
prised 4757 children (2315 AFAB, ages 9 to 10 years) from the ABCD 
2.0.1 release (26). The research protocol for the dataset was reviewed 
and approved by a central Institutional Review Board (IRB) at the 
University of California, San Diego, and, in some cases, by individual 
site IRBs. Parents or guardians provided written informed consent, 
and children assented before participation.

Sex and gender data
We included sex assigned at birth (referred to as “sex”) and gender 
data from the Youth Self-Report and Parent-Report Gender Ques-
tionnaires (14). All participants included in these analyses completed 
the Youth Gender Survey, which includes four questions that measure 
felt-gender, gender expression, and gender contentedness. In addi-
tion, their parents/caregivers completed an adapted Gender Identity 
Questionnaire (59, 60) that included 12 questions that measure sex-
typed behavior during play and gender dysphoria. A list of all questions 
asked in the self-report and parent-report surveys can be found in 
table S1. We computed summary self-report and parent-report gender 
scores for all participants by computing the sum across all questions 
within each questionnaire, respectively, and used these summary 
scores in our analyses. We used nonparametric Mann-Whitney U 

rank tests to evaluate sex differences in the gender scores. We corrected 
all P values for multiple comparisons using the Benjamini-Hochberg 
false discovery rate (q = 0.05) procedure (61). We also computed non-
parametric correlations between the gender scores for each assigned 
sex to evaluate any underlying relationships that may exist.

Image acquisition and processing
We processed the minimally preprocessed MRI data as previously de-
scribed (45, 62). Briefly, we further processed minimally preprocessed 
T1 data using FreeSurfer 5.3.0 (63–66) to generate cortical surface 
meshes for each individual, which we then registered to a common 
spherical coordinate system (65, 66). We also processed the minimally 
preprocessed functional Magnetic Resonance Imaging (fMRI) data 
with the following steps: (i) removal of initial frames, with the number 
of frames removed depending on the type of scanner (56), and (ii) 
alignment with the T1 images using BBR (67) with FsFast. We com-
puted FD (68) and DVARS (69) using fsl_motion_outliers. We filtered 
out respiratory pseudomotion using a bandstop filter (0.31 to 0.43 Hz) 
before computing FD (70–72). We also regressed a total of 18 nuisance 
covariates from the fMRI time series: global signal, six motion correc-
tion parameters, averaged ventricular signal, averaged white matter 
signal, and their temporal derivatives. We estimated regression coef-
ficients from the noncensored volumes. We performed global signal 
regression as we are interested in behavioral prediction, and global 
signal regression has been shown to improve behavioral prediction 
performance (49, 73). Finally, we interpolated the brain scans across 
censored frames using least-squares spectral estimation (74), applied 
band-pass filtering (0.009 Hz ≤ f ≤ 0.08 Hz), projected them onto Free-
Surfer fsaverage6 surface space, and smoothed them using a 6-mm full 
width at half maximum kernel. Once processed, we extracted regional 
time series for 400 cortical (75) and 19 noncortical (76) parcels. We 
computed full correlations between those time series yielding a 419 × 
419 pairwise regional functional connectivity matrix. All processing 
as described was completed on a local server.

Predictive modeling
Linear ridge regression models avoid overfitting, are interpretable, 
and are relatively computationally inexpensive compared to deep 
learning algorithms for brain-based behavioral predictions (47, 50). 
Here, using a similar framework as those previously used by our 
research team (22, 23, 42, 43), we perform analyses to establish the 
functional brain correlates of assigned sex and gender. We used 
cross-validated ridge regression models to predict sex and gender 
based on functional connectivity. To facilitate comparisons of model 
performance and feature contributions across sex and gender pre-
dictions, we implemented the linear ridge regression framework for 
sex predictions instead of a classification model. Here, we use the 
term “prediction” in a machine learning context to refer to the out-
put of the algorithms that estimate an individual’s sex or gender. For 
further discussion on our use of this term, we refer readers to our 
Supplementary Text. For models predicting sex, we included all in-
dividuals (AMAB and AFAB), while for models predicting gender, 
we either included all individuals or used a sex-specific approach 
(i.e., trained and tested separately for each sex). For models predict-
ing gender that included all individuals, we reversed gender scores 
in AFAB children such that they ranged from 0 to 20 for self-report 
scores (with 0 indicating more feminine gender identities and ex-
pressions and 20 indicating more masculine gender identities and 
expressions) and 0 to 60 for parent-report scores (with 0 indicating 
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more feminine gender identities and expressions and 60 indicating 
more masculine gender identities and expressions). For each model, 
we split the data into 100 distinct train and test sets (at approximately 
a 4:1 ratio) without replacement. We considered imaging site when 
splitting the data such that we placed all participants from a given site 
either in the train or test set but not split across the two. Within each 
train set, we optimized the regularization parameter using threefold 
cross-validation while similarly accounting for imaging site as in the 
initial train-test split. Once optimized, we evaluated models on the 
corresponding test set. We repeated this process for each of the 100 
distinct train-test splits to obtain a distribution of prediction accuracy 
and explained variance. To evaluate model significance, for each set 
of predictive models, we generated a corresponding set of null models 
as follows: the output variable was randomly permuted 1000 times, 
and each permutation was used to train and test a null model using a 
randomly selected regularization parameter from the set of selected 
parameters from the original model. We then compared prediction 
accuracy from each of the null models to the average accuracy from 
the corresponding distribution of model accuracies of the original 
(true) models. The P value for each model’s significance is defined as 
the proportion of null models with prediction accuracies or explained 
variances greater than or equal to those corresponding to the original 
(true) distributions. We corrected all P values for multiple compari-
sons across the gender measures using the Benjamini-Hochberg false 
discovery rate (q = 0.05) procedure (61).

Feature weights
We used the Haufe transformation (31) to transform feature weights 
obtained from the linear ridge regression models to increase their 
interpretability and reliability (45, 62, 77). For each train split, we 
used feature weights obtained from the model, W, the covariance 
of the input data (functional connectivity), Σx, and the covariance 
of the output data (behavioral score), Σy, to compute the Haufe-
transformed feature weights, A, as follows: A = ΣxWΣ

−1

y
. We then 

averaged the absolute Haufe-transformed feature weights across the 
100 splits to obtain a mean feature importance value. We computed 
full correlations between mean feature importance obtained from 
the different models to evaluate whether they relied on shared or 
unique features to predict sex/gender. For all models, we also sum-
marized pairwise regional feature importance at a network-level to 
support interpretability as previously described (22). Briefly, we 
assigned cortical parcels to 1 of 17 networks from the Yeo 17-network 
parcellation (33) and subcortical, brainstem, and cerebellar parcels 
to a single noncortical network for convenience. We then averaged 
regional pairwise absolute feature weights to yield network-level 
estimates of associations between functional connectivity and sex/
gender. Finally, we computed full correlations between these 
network-level estimates to evaluate the extent to which the network 
correlates of sex and gender were shared.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
Table S1
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