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Abstract 

A classic distinction in psychiatry has been the study of externalizing and internalizing traits. 

However, the extent to which shared or unique brain network features – such as patterns of 

functional connectivity – may predict internalizing and externalizing behaviors in children and 

adults remain poorly understood. Using a sample of 2262 children from the Adolescent Brain 

Cognitive Development (ABCD) study and 752 adults from the Human Connectome Project 

(HCP), we show that predictive network features are, at least in part, dissociable across both 

categories of behavior and developmental stages. Traits within internalizing and externalizing 

behavioral categories are predicted by similar network features concatenated across task and 

resting states. However, distinct network features predict internalizing and externalizing 

behaviors in children and adults. These data reveal shared and unique brain network features 

that account for individual variation within broad internalizing and externalizing categories 

across developmental stages. 
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Introduction 

A classic distinction in child and adolescent psychiatry has been the study of 

“internalizing” and “externalizing” behaviors1. These two broad classes of psychopathology were 

first proposed by T.M. Achenbach from a factor analysis of symptoms in children and 

adolescents with psychiatric illness2. Internalizing behaviors are internally directed towards the 

individual and manifest in their extreme form as sadness, withdrawal, somatic complaints, and 

anxiety, while externalizing behaviors are directed towards the external environment and involve 

disruptive, aggressive, impulsive, and defiant behaviors3. The expressions of internalizing and 

externalizing behaviors exhibit cross-generational associations between parents and children4–6. 

These behaviors have also been linked with reduced school engagement and an increased risk 

for suicide attempts in childhood and adolescence7–9, as well as worse work performance and 

lower cognitive abilities in adulthood10,11. However, the neural underpinnings associated with 

internalizing and externalizing behaviors across distinct developmental stages remain poorly 

understood.  

Throughout development, functional connectivity patterns within and between large-

scale brain networks can predict individual differences in cognition12, impulsivity13 and 

psychiatric symptoms14,15. While individual-level variability in the functioning of large-scale brain 

networks can predict individual differences within broad categories of cognition, personality and 

mental health in both children and adults16,17, macroscale patterns of brain functioning are 

dynamic across the lifespan18–20. The transition from childhood through adolescence to 

adulthood reflects critical neurodevelopmental stages characterized by a protracted period of 

synaptic pruning, intracortical myelination, cortical thinning, and functional network 

segregation18,21. Therefore, it is unclear if the specific brain-behavior relationships observed in 

childhood mirror those identified in adulthood. Furthermore, although shared network features 

account for individual variation within broad classes of behavior16, individual-specific patterns of 

functional network connections may predict even finer-grained categories, such as internalizing 

and externalizing behaviors. Here, we aimed to examine the extent that functional network-

based predictors of internalizing versus externalizing behaviors were similar across a large 

sample of children and their parents. We further tested whether such patterns can be observed 

in an independent sample of young adults.  

In the present study, we predicted internalizing and externalizing measures of 

psychopathology in a sample of children (and their parents) from the Adolescent Brain Cognitive 

Development (ABCD) study22 using children’s functional connectivity patterns across four brain 

states: resting-state, monetary incentive delay (MID) task23, stop signal task (SST)24 and 
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emotional N-Back task25. We further explored functional connectivity predictors of internalizing 

and externalizing behavior in an independent cohort of young adults from the Human 

Connectome Project (HCP)26, using resting-state fMRI connectivity matrices. Multi-kernel ridge 

regression (multiKRR) models revealed network-based features that were predictive of 

behaviors within the same category were more correlated with each other than with those 

across different categories in ABCD children and parents, while single-kernel ridge regression 

(KRR) models showed a lack of categorical distinction in HCP adults.  Moreover, predictive 

network features were distinct across the two samples. These results support internalizing and 

externalizing behaviors as distinct factors of psychopathology and suggest that brain-based 

predictive features may change across the lifespan. 
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Results 

ABCD Results 

 We used fMRI data acquired across three task states, including monetary-incentive 

delay (MID), stop-signal task (SST) and N-back, as well as resting state fMRI from N=11,875 

healthy children (ABCD 2.0.1 release22). Our analyses considered 33 dimensional measures 

from the available mental health assessments collected from child participants and their 

parents27, comprised of 15 measures of internalizing problems, 10 measures of externalizing 

problems, 2 measures of thought problems and 6 measures of attention problems 

(Supplementary Table 1). The final analytical sample consisted of n=2,262 unrelated children 

who passed fMRI quality control and had complete data (see Methods).  

 

Multi-kernel ridge regression predicts most behavioral measures 

 We defined 400 cortical and 19 subcortical regions-of-interest (ROIs) based on Schaefer 

Parcellation28,29 and computed a 419 by 419 functional connectivity (FC) matrix for each brain 

state. Following prior work16, we used multi-kernel ridge regression (multiKRR) models to 

predict each behavioral measure from child-specific FC matrices concatenated across brain 

states. To evaluate predictive accuracy, we performed nested cross-validation procedures with 

120 folds (see Methods). Pearson’s correlation between predicted and actual behavioral scores 

and coefficient of determination (COD; see Supplementary method S3) were used as accuracy 

metrics. Statistical significance of prediction accuracy was assessed by permutation testing. 

Prediction accuracies -- given by Pearson’s correlation -- of the models trained on 

children’s functional connectivity data are shown in Fig. 1A (for behavioral predictions in ABCD 

children) and Fig. 1B (for behavioral predictions in ABCD parents). Most behavioral measures 

were predicted better than chance after FDR correction (q<0.05), except for child somatic 

complaints and somatic problems, parent intrusive behavior, parent ADHD problems and parent 

inattention (see Methods). Parent ADHD problems became significantly predicted after FDR 

correction when COD was used as the accuracy metric. Prediction accuracies were broadly 

stable across both metrics (see Supplementary Fig. 1 for COD results). Notably, these findings 

demonstrate that patterns of FC specific to each child can significantly predict their parent’s self-

reported internalizing and externalizing behaviors (Fig. 1B).  
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Figure 1. Cross-validated prediction performance using the multi-kernel ridge regression (multi-

KRR) model, using functional connectivity matrices concatenated across four brain states 

(resting state, MID, SST and N-back) from children’s neuroimaging data to predict (A) parent-

reported child behavior and (B) self-reported parent behavior. Prediction performance was 

calculated as the mean Pearson’s correlation between observed and predicted values across 

120 cross-validation folds for each behavioral measure from the ABCD dataset. For each 

boxplot, the top and bottom edges represent upper and lower quartiles of correlation coefficient 

(r) distributions, and the horizontal lines mark the corresponding median. Outliers are plotted as 

circles and were defined as data points outside of the interquartile range. The whiskers extend 

to the most extreme data points not considered as outliers. Asterisks (*) denote above-chance 

significance after correcting for multiple comparisons (FDR q<0.05).  
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Predictive brain network features are more similar within behavioral categories 

 There is broad consistency in the brain network features predictive of mental health-

relevant traits16. Here, we sought to determine if internalizing and externalizing behaviors 

exhibited unique predictive network markers in childhood. At each cross-validation fold, we 

quantified “feature importance” (i.e., how important a given network-based predictor was to the 

model) of each interregional FC edge predicting each behavior using Haufe-transformed (see 

Methods) predictive feature weights30, yielding a 419 by 419 predictive feature matrix for each 

behavior and for each brain state.  

Next, we analyzed whether predictive feature weights computed from multiKRR model 

outputs were more similar among behaviors within than between categories (Fig. 2). The 

predictive feature weight vector for each behavioral measure was averaged across all four brain 

states and correlated with all other measures. Focusing on each of the four internalizing and 

externalizing categories (Child Internalizing, Child Externalizing, Parent Internalizing and Parent 

Externalizing), the difference between mean correlation within each category (“within-category 

mean correlation”) and mean correlation with all other three categories (“between-category 

mean correlation”) was computed 10000 times and used to generate a null distribution of mean 

differences (Fig. 3; see Methods). Mean within-category correlations of predictive feature 

weights were significantly higher than mean between-category correlations (FDR qs≤0.0002; 

Fig. 3). Notably, the similarity pattern of predictive feature weights across behavioral measures 

was highly correlated with the similarity pattern of these behavioral measures on the behavioral 

level (Supplementary Fig. 2; r=0.97). 
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Figure 2. Predictive-network features are similar within behavioral categories. Pearson’s 

correlation (r) of predictive feature weights between all pairs of behavioral measures 

significantly predicted by multi-kernel ridge regression models in the ABCD study. Behavioral 

measures from the same behavioral categories are grouped together. Warmed colors indicate 

stronger positive correlations of the mean predictive feature weights between a pair of 

behavioral measures, indicating that these behavioral measures were predicted by similar 

functional connectivity patterns.  
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Figure 3. Correlations of predictive feature weights were significantly stronger across behavioral 

measures within the same category than between different categories. Differences between 

within- and between-category mean correlations for child and parent internalizing and 

externalizing categories were significantly greater than the null distributions (Ps≤0.0002). 

Correlation values were converted to z-scores using Fisher’s r-to-z transformation prior to 

averaging. Histograms display null distributions of mean differences generated through 10000 

permutations with shuffled behavioral labels. Dashed lines represent observed mean 

differences for each of the four categories.  
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Distinct brain network features in children predict internalizing and externalizing 

behaviors in both children and their parents 

Prior work suggests the presence of shared network features across broad categories of 

mental health16. Our analyses revealed unique parcel-level FC profiles predicting distinct 

aspects of psychopathology. Next, we examined the extent that some predictive-network 

features may be shared across behavioral categories. Predictive feature matrices were 

averaged across all behavioral measures within each category, resulting in 32 predictive feature 

matrices (one for each behavioral category and each brain state). To limit the number of 

multiple comparisons, predictive feature weights were averaged within and between 18 

networks (following the 17-network partition in Yeo et al., 201131 plus one subcortical network28) 

at each permutation. Permutation testing was performed on mean predictive feature weights 

from each of the resulting 171 unique network blocks. We also conducted a conjunction analysis 

to extract the predictive feature weights that were not only statistically significant but also 

exhibited consistent directionality (positive or negative) across all brain states, and then 

averaged these predictive feature weights across all brain states (Fig. 4A). These analyses 

yielded predictive feature weights that are both shared across behavioral measures within a 

category and across brain states (Fig. 4B). Predictive feature weights were summed across 

each row in Fig. 4A and plotted on brain surface in Fig. 4C for the positive weights and Fig. 4D 

for the negative weights. These figures reveal that both shared and unique FC patterns predict 

distinct behavioral categories in both children and their parents. 

To examine the extent to which these predictive features are similar across behavioral 

categories in children and their parents, we next calculated the proportion of overlapping 

network blocks which significantly predicted each pair of behaviors (Fig. 4E). Two network 

blocks were counted as overlapping if sums of predictive feature weights within these network 

blocks exhibited consistent directionality. Of note, the observed predictive features were not fully 

distinct across children and parents. The largest proportion of overlap was 0.66 between parent 

internalizing and externalizing categories, while the lowest proportion of overlap was 0.42 

between child internalizing and parent externalizing categories. Proportions of overlap between 

other four category pairs ranged from 0.50 to 0.60, demonstrating the presence of both common 

and distinct patterns of predictive-network features across categories and populations. As one 

example, the proportion of network blocks that exhibit the same directionality across child and 

adult internalizing categories was 0.54.  
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Figure 4. Shared and unique functional network features predict internalizing and externalizing 

behaviors in children and their parents. (A) Matrices of predictive feature weights, averaged 

across all behavioral measures within each child and parental internalizing and externalizing 

categories, and averaged across all brain states. Only weights that were statistically significant 

and that exhibited the same directionality across all brain states are shown. Rows and columns: 

predictive weights based on FC estimates of all pairwise cortical regions. For visualization 
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purposes, all predictive feature weights were divided by their standard deviation. (B) Predictive 

feature weights averaged based on network assignment in panel (A). (C) Positive predictive 

feature weights summed across rows of panel (A) for each cortical region. A more positive value 

indicates that stronger functional connectivity associated with a given cortical parcel predicts 

higher behavioral scores in a behavioral category. (D) Negative predictive feature weights 

summed across rows of panel (A) for each cortical region. A more negative value indicates that 

weaker functional connectivity associated with a given cortical region predicts higher behavioral 

scores in a behavioral category. In both panels (C) and (D), the color of each cortical region 

indicates the percentile of predictive feature weights among 400 regions. (E) The 2D grid 

displays the proportion of network blocks that exhibit the same directionality across each pair of 

child behavioral categories relative to the behavioral category represented by each column. 

Here, each within- and between-network block was coded as 1, 0 or -1 depending on whether 

sum of predictive feature weights within that block is greater than, equal to or lesser than 0, 

resulting in an 18 by 18 matrix for each behavioral category. The number of network blocks 

having the same non-zero entries across both matrices associated with each pair of behavioral 

categories was counted and divided by the total number of non-zero significantly predictive 

network blocks. 
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Single-kernel ridge regression predicted most behavioral measures in adults 

 To examine brain-based predictive network features in adults, we used resting-state 

fMRI data from the HCP WU-Minn S1200 sample (n=752) and analyzed 18 dimensional 

measures from the Achenbach Self-Report32. There were 8 measures of internalizing problems, 

5 measures of externalizing problems, 1 measure of thought problems and 4 measures of 

attention problems (Supplementary Table 2; see Methods). All analysis steps were performed 

as above, except that single-kernel ridge regression (KRR) models were used to predict each 

behavioral measure from subject-specific resting-state FC due to the lack of task fMRI data in 

the HCP. Given that the HCP was not collected across different sites, we implemented 60 

random initiations of 10-fold nested cross-validation. 

Prediction accuracies – given by Pearson’s correlation -- of the KRR models across all 

behaviors are shown in Supplementary Fig. 4. Although most behavioral measures were 

predicted better than chance after FDR correction (q<0.05), only two out of eight behavioral 

measures under the internalizing category survived FDR correction (Supplementary Fig. 4). 

When COD was used as the accuracy measure, only withdrawn, aggressive behavior, and 

attention problems reached better-than-chance accuracy after FDR correction (Supplementary 

Fig. 5). 

 
Predictive brain network features are similar across behavioral categories in adulthood 

 As above, we examined similarity patterns of predictive feature weights calculated from 

KRR model outputs across behaviors within and between different categories (Fig. 5). In 

contrast to the ABCD analyses, predictive feature weights were highly correlated across 

categories (Fig. 5; Supplementary Fig. 7).  We then conducted a permutation test similar to the 

ABCD analyses, focusing on adult internalizing and externalizing categories. Mean within-

category correlations of predictive feature weights were not significantly different from mean 

between-category correlations (Ps>0.12; Fig. 5B). These results suggest that predictive network 

features associated with internalizing and externalizing behavior in adults are broadly consistent 

between behavioral categories. Although network features predicting intrusive behavior were 

weakly correlated with those predicting other measures, it is not surprising given the weak 

correlations between intrusive behavior and other measures on the behavioral level. The 

observed similarity pattern of predictive feature weights across behaviors was moderately 

correlated with the similarity pattern of these measures on the behavioral level (Supplementary 

Fig. 6; r=0.59).   
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Figure 5. Predictive brain network features are similar across conceptually-linked behavioral 

categories in adulthood. (A) The correlation matrix displays Pearson’s correlation r of predictive 

feature weights between all pairs of behavioral measures significantly predicted in the HCP 

study. Behavioral measures are grouped within associated behavioral categories. Higher 

intensity colors indicate higher positive (red) and negative (blue) correlations of the mean 

predictive feature weights between a pair of behavioral measures. (B) Differences between 

mean correlations of predictive feature weights across behavioral measures within the same 

category and between different categories were not significantly greater than the null 
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distributions in the adult internalizing and externalizing categories (Ps>0.12). Correlation values 

were converted to z-scores using Fisher’s r-to-z transformation prior to averaging. Graphing 

conventions are similar to that of Figure 3.  

  

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2023. ; https://doi.org/10.1101/2023.05.20.541490doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.20.541490
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

Predictive feature weights are largely distinct across ABCD and HCP datasets 

To investigate if functional network features predicting internalizing and externalizing 

behaviors are distinct across development, we assessed the similarity of predictive network 

features across ABCD and HCP datasets. Given that the multiKRR model (ABCD) was applied 

to FC matrices concatenated across four different brain states while the KRR model (HCP) was 

only applied to the resting state, we implemented KRR models in the ABCD data using only 

resting-state fMRI. We then correlated the resulting ABCD predictive feature weights with those 

computed from the HCP analyses. We found that FC features predicting internalizing and 

externalizing problems in ABCD children and HCP adults were only weakly correlated (Fig. 6). 

We then ran permutation tests to compare the difference in the mean correlation within each 

category and the mean correlation between each category and the corresponding category in 

the other age group. As the adult internalizing category contained only two significantly 

predicted measures, we only focused on child internalizing and externalizing and adult 

externalizing behaviors. The difference was significantly greater than its null distribution 

(ps≤0.0146) for the child categories but failed to reach statistical significance for the adults 

(p=0.0601; Fig. 6B). From the predictive feature matrices associated with child and adult 

internalizing and externalizing categories, we computed the proportion of overlapping network 

blocks which significantly predicted each pair of categories (Fig. 6C). Proportions of overlap 

were distinctly higher for pairs of behavioral categories within the same dataset than between 

the two datasets. These results suggest that although shared brain network features account for 

individual variation within broad categories of internalizing and externalizing problems both in 

childhood and adulthood, functional network predictors may change throughout the lifespan, 

exhibiting distinct fingerprints across developmental stages.  

Despite the broad distinction between FC patterns predicting internalizing and 

externalizing behaviors across these two datasets, shared predictive patterns may still be 

present within select edges. Here, the shared predictive network features associated with both 

child and adult internalizing categories primarily involved the default, control and visual 

networks, while the shared predictive network features associated with child and adult 

externalizing primarily involved somato/motor, ventral and dorsal attention networks 

(Supplementary Fig. 8).  
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Figure 6. Distinct functional network features predict internalizing and externalizing behaviors in 

children from the ABCD study and adults from the HCP study. (A) The correlation matrix 

displays the Pearson’s correlation r of predictive feature weights between all pairs of behavioral 

measures significantly predicted by single-kernel ridge regression models in the ABCD and 

HCP studies. Measures from the same behavioral category are grouped together. Colors 

indicate positive (red) and negative (blue) correlations of the mean predictive feature weights 

between behavioral measures and populations. (B) Predictive feature weights associated with 

child internalizing and externalizing categories were significantly more correlated within 

categories than with the corresponding adult categories (Ps≤0.0186). The permutation test was 

not applicable for the adult internalizing category because only one correlation can be computed 

between two behavioral measures in the category. Correlation values were converted to z-

scores using Fisher’s r-to-z transformation prior to averaging. Graphing conventions are similar 

to that of Figure 3. (C) The 2D grid displays the proportion of network blocks that exhibit the 

same directionality across each pair of child and adult behavioral categories relative to the 

behavioral category represented by each column.  
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Discussion 

Here, we used estimates of individual-specific, functional connectivity from a large, 

diverse sample of healthy children to predict internalizing- and externalizing- related behavioral 

measures in children and their parents. Predictive feature weights were more correlated across 

behaviors within the same categories than with those from different categories. Of note, our 

analyses revealed that brain data specific to each child can be used to predict self-reported 

internalizing and externalizing behaviors in their parents. In an independent sample of healthy 

young adults, the opposite pattern was observed, where predictive feature weights were 

similarly correlated across distinct mental health-linked behavioral categories. Moreover, 

predictive feature weights associated with internalizing- and externalizing-related behavioral 

measures were distinct across children and adults, suggesting that brain-based predictors of 

internalizing and externalizing behaviors may change across the lifespan.  

Internalizing and externalizing symptoms reflect distinct factors across various mental 

disorders, irrespective of demographic and collection method33–37. Predictive network features 

are similar across behaviors within the broad categories of mental health16. Although large-scale 

networks can be mechanistically informative for studying neurocognitive processes38,39 and 

psychiatric phenotypes15,40–42, the similarity of whole-brain FC patterns predicting measures of 

internalizing and externalizing behavior has not been directly assessed. Through the use of 

multiKRR16,43, we were able to predict most mental health measures in children and their 

parents from children’s resting-state functional connectome. Here, we demonstrated that the 

whole-brain patterns of functional connectivity in children can be used to predict internalizing 

and externalizing measures in their parents. Our results highlight that the predictive utility of 

functional connectomes may extend beyond the individual, and provide a robust entry point for 

future work on shared environmental and contextual factors, broader behavioral patterns within 

family systems, and/or the heritability of internalizing and externalizing traits.  

Consistent with prior work by Chen et al. 2022 (which used the same dataset), we 

observed that predictive features are generally similar across measures of internalizing and 

externalizing behaviors. However, above and beyond this broad pattern of similarity, predictive 

feature weights were more correlated within than between behavioral categories. These findings 

are consistent with theoretical models that consider internalizing and externalizing behaviors as 

distinct constructs of psychopathology under a general psychopathology p factor44,45. Behavioral 

measures associated with different categories are characterized by both common and distinct 

network predictors in children. On average, higher behavioral scores in both child internalizing 

and externalizing categories were predicted by more positive FC between default, control and 
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limbic networks, between somato/motor and salience networks and more negative FC between 

default and somato/motor networks. Beyond these shared features, there was substantial 

heterogeneity in the FC patterns predicting internalizing- and externalizing-related behaviors. 

These results align with previous neuroimaging studies implicating frontoparietal46,47, default47–

49, salience49,50, limbic49 and somato/motor49,51 network disruptions across psychiatric disorders.  

Contrary to the similarity pattern observed in ABCD children, mean correlations of 

predictive feature weights across all pairs of behavioral measures within internalizing and 

externalizing categories were not significantly different from mean correlations between different 

categories in HCP adults. Our findings suggest that diffuse functional network patterns may 

predict a more general psychopathology factor in adults, while more specific FC patterns may 

differentially predict behaviors associated with specific categories of psychopathology in 

children. One consideration is that single kernel ridge regression (KRR) models used in HCP 

analyses reached better-than-chance predictive accuracy for only two out of eight measures 

assigned to adult internalizing category. This may have biased the results for the permutation 

test assessing statistical significance of mean correlation differences within and between adult 

internalizing and externalizing categories. In addition to different correlation patterns across 

behavioral categories between the two datasets, we also observed distinct FC features 

predicting same categories of internalizing and externalizing behaviors in children compared to 

adults. Weak correlations of predictive feature weights associated with internalizing and 

externalizing behavior across the two samples may be attributable to development of functional 

network organization from childhood through adolescence and then adulthood19,20,52–54. 

However, such differences may also be attributable to site differences between the two 

collection efforts. Of note, our interpretations are limited by the cross-sectional nature of the 

available data. Future work should further characterize the longitudinal trajectories of brain 

development and associated brain-based predictions across the lifespan. Another limitation of 

our study is that we did not test our models separately in each sex. Previous studies have 

suggested brain-based predictive models often fail to generalize across sexes55, and future 

work should test sex-/gender- specific models of behavior56.   

Taken together, our study found that predictive network features cluster within the same 

categories of internalizing and externalizing behavior in ABCD children. Intriguingly, the utility of 

brain-based predictive models in children extended to capture behaviorally relevant signals in 

their parents. Finally, although most behaviors were predicted better than chance in children 

and adults, analyses revealed distinct network predictors across datasets. Future work will 
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benefit from the longitudinal study of common and distinct brain-based predictive features 

across childhood, adolescence, and adulthood. 
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Methods 

Participants 

 11,875 typically-developing children and their parents across 21 sites in the United 

States participated in the ABCD study at baseline (ABCD release 2.0.1). The final analytical 

sample consisted of 2,262 unrelated children who passed strict preprocessing quality control, 

had complete fMRI data across all brain states and complete scores across all behavioral 

measures. Similar to Chen et al., 2022, we combined the 22 ABCD sites into 10 “site-

categories” to reduce sample size variability across sites (Supplementary Table 5). Subjects 

within the same site were also in the same site-category. Detailed demographic information can 

be found in Supplementary Table 6. 

 1,206 healthy adults participated in the HCP study (HCP S1200 Data Release). After 

pre-processing quality control of imaging data, participants were filtered from Li's set of 953 

participants57 based on the availability of a complete set of structural and resting-state fMRI 

scans, as well as all behavioral scores of interest. Our main analysis comprised 752 adult 

participants, who fulfilled all selection criteria17. Detailed demographic information can be found 

in Supplementary Table 7. 

 

Neuroimaging 

Data acquisition 

 For the ABCD study, all T1w images and fMRI data was acquired using protocols 

harmonized across three 3 tesla(T) scanner platforms (i.e., Phillips, Siemens Prisma and 

General Electric 750) at 21 sites. Twenty minutes of resting-state fMRI data, consisting of four 

5-minute runs, was collected from each ABCD child participant. For each of the three tasks 

(MID, SST and N-Back)23–25, fMRI data was acquired over two runs with 2.4mm isotropic 

resolution with a TR of 800ms. The structural T1 scans were acquired with 1mm isotropic 

resolution with a TR of 2500ms. For full details of imaging acquisition can be found elsewhere58.  

 The fMRI data in the HCP data was acquired using an optimized protocol with 2mm 

isotropic resolution and a TR of 700ms. Each HCP subject goes through one structural MRI 

session and two fMRI sessions. Each fMRI session consists of two 15-minute resting-state 

scans with opposite phase encoding directions (L/R and R/L). The structural T1 scans were 

acquired using 0.7mm isotropic resolution and a TR of 2400ms. Full details of the acquisition 

protocol can be found elsewhere26. 

 

Data processing 
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 Minimally preprocessed T1w images59 in the ABCD study were further processed using 

FreeSurfer v5.3.060–65. The cortical surface meshes were then registered a common spherical 

coordinate system62,63. Subjects who failed recon-all QC were subsequently excluded59. The 

minimally preprocessed fMRI data59 were subsequently processed in the following manner. The 

first four frames were removed59. Slice time correction was performed with the FSL library66,67. 

Motion correction was performed using rigid body translation and rotation with the FSL package. 

The resulting fMRI images were then aligned with the processed T1w images68 with FsFast 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast ), and only runs with registration costs less 

than 0.6 were retained. Framewise displacement (FD)67 and voxel-wise differentiated signal 

variance (DVARS)69 were computed by fsl_motion_outliers. Volumes with FD > 0.3 mm or 

DVARS > 50, along with one volume before and two volumes after, were flagged as outliers. A 

bandstop filter was applied to remove respiratory pseudomotion70. Uncensored segments of 

data having fewer than 5 contiguous volumes were also flagged as outliers and censored71. 

Runs with more than half of the volumes flagged as outliers were discarded. Participants with 

less than 4 minutes of data for each fMRI state (rest, MID, N-Back, SST) were excluded from 

further analysis. Nuisance regressors, including global signal, six motion correction parameters, 

averaged ventricular signal, averaged white matter signal, and their temporal derivatives (18 

regressors in total), were regressed out of the fMRI time series from the unflagged volumes. 

Data were interpolated across censored frames72, band-pass filtered at 0.009 Hzf0.08 Hz, 

projected onto FreeSurfer fsaverage6 surface space, and smoothed using a 6mm full-width half 

maximum kernel.  

For the HCP study, minimally preprocessed T1w images73 went through bias- and 

distortion- correction using the PreFreeSurfer pipeline and registered to MNI space. Cortical 

surface reconstruction was conducted using FreeSurfer v5.2 using recon-all adapted for high-

resolution images. The reconstructed surface meshes were then registered to the Conte69 

surface template74. After preprocessing, the fMRI data were corrected for gradient-nonlinearity-

induced distortions. The fMRI time series in each frame were then realigned to the single-band 

reference image to correct for subject motion using rigid body transformation67,75 with FSL. The 

resulting single-band image underwent spline interpolation to correct for distortions and was 

then registered to the T1w image68. Native fMRI volumes went through nonlinear registration to 

the MNI space and mapped to the standard CIFTI grayordinate coordinate space. Further 

details about the preprocessing and processing pipelines of structural and functional images 

can be found elsewhere73.  
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Functional connectivity 

 We used 400 cortical regions of interest29 (ROIs) and 19 subcortical ROIs28. Functional 

connectivity (FC) was measured by Pearson’s r correlations between the mean time series of 

each pair of ROIs. Censored frames were ignored when computing functional connectivity. In 

the ABCD study, the average FC matrix across all runs in each subject from each state (rest, 

MID, N-back, SST) was used for subsequent analyses. To match processing across resting and 

task states, task activations were not regressed from the task-state data. For the HCP study, the 

average FC matrix across all runs in each subject was only computed from the resting state and 

used for subsequent analyses.  

 

Measures of internalizing and externalizing behaviors 

 We included 25 dimensional measures of internalizing and externalizing in our analyses, 

selected from all available mental health relevant assessments taken from child participants and 

their parents27 in the ABCD study. This consisted of 15 internalizing measures and 10 

externalizing measures. Thought and attention problems are related to both internalizing and 

externalizing psychopathology76,77. Accordingly, we included 2 measures of thought problems 

and 6 measures of attention. Participants without available data across all behavioral measures 

were excluded from analysis. The complete list of the included variables can be found in Tables 

S1 and S2. Behavioral measures were grouped into four categories: Internalizing, Externalizing, 

Thought Problems and ADHD Problems for both children and their parents, resulting in eight 

behavioral categories in total (Supplementary Table 1).  

In data from the HCP, we analyzed 18 dimensional measures of internalizing, 

externalizing, thought and attention problems from the Achenbach Self-Report (ASR) 

questionnaire, resulting in four behavioral categories (Supplementary Table 2).  

 

Statistical analysis 

 Consistent with prior work16, we used multi-kernel ridge regression (multiKRR) with l2 

regularization to predict each behavioral measure from participant-specific FC matrices across 

all brain states (rest, MID, N-back, SST) jointly in the ABCD study. Behavioral measures in the 

HCP study were predicted from resting-state FC using kernel ridge regression (KRR) with l2 

regularization. Details about KRR and multiKRR models can be found in the Supplement (see 

Supplementary methods S1 and S2). Age and mean FD were entered as covariates. Both 

models assume that participants with more similar FC patterns have more similar behavioral 

measures. Models were implemented with nested cross-validation procedures similar to Ooi et 
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al., 2022. Head motion (mean FD and DVARS) were regressed from each behavioral measure 

prior to cross-validation.  

In the ABCD analyses, we performed leave-3-site-clusters-out nested cross-validation 

for each behavioral measure. At each fold, a different set of 3 site-categories served as the test 

set, and the remaining 7 site-categories were used as the training set, resulting in 120 folds in 

total. In the HCP analyses, we implemented 60 random initiations of 10-fold nested cross-

validation. Participants from the same family were assigned to either training or testing sets and 

were never split across training and test sets in any cross-validation fold.  

Across both datasets, model and regularization parameters were estimated from the 

training set at each fold. The estimated parameters were then applied to the unseen participants 

from the test set and evaluated for accuracy by both correlating predicted and actual 

measures78, and by coefficient of determination (COD). To assess whether model prediction 

performed better than chance, statistical significance of prediction accuracy was assessed by a 

permutation test whereby the entire cross-validation procedure was rerun on behavior measures 

randomly reshuffled across participants in each dataset. Care was taken to avoid shuffling 

between families or sites.  

 

Model Interpretation 

 To interpret the predictive importance of each FC feature, we used an approach from 

Haufe and colleagues (2014) to transform predictive feature weights associating each FC edge 

to the behavioral measure. Predictive feature weight was computed by the covariance between 

the predicted behavioral measure and the FC edge. This resulted in a 419 x 419 predictive 

feature matrix for each brain state and each behavioral measure. A positive (or negative) 

predictive feature weight indicates that higher FC predicts greater (or lower) behavioral values. 

Statistical significance of these predictive feature weights was tested with permutation tests and 

corrected for multiple comparison using FDR (q<0.05). To reduce the number of multiple 

comparisons, predictive feature weights were averaged within and between 18 large-scale 

functional networks28,29 before conducting the permutation test.  
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