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Profound environmental, hormonal, and neurobiological changes mark the transi-
tion to motherhood as a major biosocial life event. Despite the ubiquity of mother-
hood, the enduring impact of caregiving on cognition and the brain across the
lifespan is not well characterized and represents a unique window of opportunity
to investigate human neural and cognitive development. By integrating insights
from the human and animal maternal brain literatures with theories of cognitive
ageing, we outline a framework for understanding maternal neural and cognitive
changes across the lifespan. We suggest that the increased cognitive load of
motherhood provides an initial challenge during the peripartum period, requiring
continuous adaptation; yet when these demands are sustained across the lifespan,
they result in increased late-life cognitive reserve.

Motherhood as a neurocognitive developmental stage

The hormonal fluctuations of pregnancy, birth, and lactation initiate rapid and extreme physiological
transformations that are unparalleled across the lifespan. These biological changes are accompanied
by a dynamic restructuring of the physical, emotional, and social environment. In concert with these
adaptations, the maternal brain undergoes significant structural and functional neuroplasticity [1,2] as
well as cognitive adaptations [3] across the peripartum period (see Glossary). The brain is trans-
formed, in preparation for and in response to, a developing child. These neural adaptations
enable mothers to manage the new and demanding tasks of motherhood and the development of
strong bonds with their child (see [4-9] for recent reviews). Appropriate and sensitive maternal
behaviors support child development and play a crucial role in establishing the welloeing of the next
generation. Reflecting the importance of the maternal influence on developing children, existing ma-
ternal brain studies tend to be infant-centric, rather than parent-centric, focusing on mothers’ neural
and behavioral responses to infant cues, but overlooking the impact of motherhood on mothers
themselves. Furthermore, the literature describing parental neurocognition tends to focus on birth-
giving mothers (Box 1).

Profound biological and environmental changes mark the transition to motherhood as a major life event,
reflecting an important developmental life stage for new mothers. Just as the hormonal and psycholog-
ical changes of adolescence prepare a person for successful adulthood, matrescence is a time when
the brain and body prepare for the transition to motherhood. These two life stages are characterized by
shifting social roles, with adulthood marking the social transition from dependence to independence,
and motherhood marking the transition to now supporting one’s own dependents.

In addition to hormonal and social similarities, changes to the maternal brain across pregnancy
are morphologically similar to those occurring in adolescence, with one study showing compara-
ble changes in gyrification, sulcal depth, and sulcal length across adolescence and matrescence
[10]. The neuroplasticity of matrescence similarly constitutes a sensitive neurodevelopmental
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Box 1. Birthing and nonbirthing parents

Parenthood is an identity with both biologically and socially determined dimensions, describing a person’s caregiving
relationship to a child, with or without a biological relationship. Indeed, the term matrescence was coined by the anthro-
pologist Dana Raphael as ‘the process of becoming a mother — a developmental passage where a woman transitions,
through pre-conception, pregnancy and birth, surrogacy, or adoption to the postnatal period and beyond’ [120]. From
a social perspective, it may be more appropriate to define parents as mother, father, or parent based on how they identify
with these terms, which may more closely align with gender identity (e.g., woman, man, non-binary), rather than sex
(e.g., male, female, intersex), or gestational relationship (e.g., birth-giving, non-birth-giving).

In the field of parental neuroscience, the vast majority of research in this area has studied people whose gender and
parental identity align with their sex. In other words, the maternal brain has been assumed to be female/woman and the
paternal brain has been assumed to be male/man. This reflects the discipline’s links with the preclinical literature, the
‘biological’ focus of many of the studies, as well as the societal norms when the studies were conducted. As such, here
we use the terms ‘mother’ and ‘father’ accordingly. As we learn more about the distinctions between gender, sex, and pa-
rental experiences, and how these dimensions interact, these terms and norms may change. It may not be possible to fully
disentangle the strictly biological from the strictly social dimensions of human parenthood.

Importantly, nonbirthing parents, particularly those with young infants, are exposed to the environment of parenthood and the
experience of caregiving. All parents are required to adapt to this environment and display novel caregiving behaviors. The
isolated impact of caregiving has been shown in female virgin rodents exposed to pups [40,121], suggesting that the care-
giving environment alone can induce beneficial neural and cognitive changes in new parents. In the only study in human
nonbirthing mothers, foster mothers showed positive associations between oxytocin levels, and the quality of their maternal
bond, and their brain response to their infant’s cues, similar to those of biological mothers [122]. However, no study to date
has examined cognitive changes across the transition to parenthood for females who become parents without being
pregnant and giving birth, or in people whose gender may not match their sex, representing a clear gap in the literature.

period, where the brain is primed to readily acquire experience-dependent skills and knowledge.
While the developmental changes of childhood, adolescence, and ageing are the subject of
intense study, the impact of motherhood as a life stage in humans remains poorly understood.

Characterizing ‘typical’ neural and cognitive development across the transition to motherhood, as
well as deviations from normative processes, has implications for how we conceptualize maternal
neurocognitive trajectories, both in early motherhood and throughout the lifespan. Until recently,
the prevailing rhetoric has been that the physiological and, by extension, neural changes of preg-
nancy, birth, and lactation fully resolve in the postpartum period. In other words, it is believed
that as sex steroid hormones return to prepregnancy levels, women return to a prepregnancy
state in body and mind. Critically, while the biological changes may resolve over time, the environ-
mental and behavioral changes of motherhood are likely to continue throughout the lifespan.
However, the longer-term and cumulative impacts of motherhood are not well characterized.

Here, we propose a framework for investigating cognition in motherhood, relevant for understanding
both the initial changes across the peripartum period and the enduring impacts of motherhood
across the lifespan (Figure 1, Key figure). We review maternal cognition across the peripartum
period, using a neurodevelopmental framework to explain cognitive decrements in pregnancy [3],
postpartum cognitive renormalization [11,12], and potential cognitive improvements in middle and
late life. Specifically, we suggest that the increased environmental complexity of motherhood
provides a cognitive challenge in early motherhood and results in increased cognitive reserve in
late life.

Early motherhood and cognition

Approximately 80% of new mothers report subjective experiences of cognitive decline across the
transition to motherhood [3]. These self-reported declines span a range of cognitive domains,
including impaired memory, concentration, and absentmindedness [3,13]. Using neuropsycho-
logical assessments and cognitive tasks, many studies have also found objective cognitive
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Glossary

Cognitive reserve: the brain’s ability to
cope with damage, illness, or cognitive
decline by recruiting pre-existing
cognitive processes.

Enriched environment: animal
housing conditions that consist of
enhanced sensory, cognitive, motor, or
social stimulation.

Executive function: a set of higher-
level cognitive processes, including
working memory, inhibitory control, and
set-shifting, which allow the control of
behavior and emotion and facilitate goal
attainment.

Matrescence: the transition to
motherhood.

Multiparous: a person who has been
pregnant or given birth more than once.
This term can also be used to describe a
multiple pregnancy (e.g., twins, triplets).
Nulliparous: a person who has never
been pregnant or given birth.

Parity: the number of children a person
has parented.

Peripartum period: pregnancy and
the first 6-8 weeks postpartum.
Postpartum period: the time following
birth, also called the postnatal period.
There is little consensus as to the length
of time included in the postpartum
period, with some defining postpartum
as the 6-8 weeks following birth and
some up to the first 6 months, aligning
with the resumption of menstruation and
cessation of breastfeeding.
Primiparous: a person who has been
pregnant or given birth to one child.
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Key figure
Reframing matrescence as a neurocognitive developmental stage in humans
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Figure 1. The transition to motherhood is associated with hormonal, neural, and cognitive changes both in the short-term (pregnancy and the postpartum period) and in
the long-term (mid and late life). Motherhood is also marked by dynamic and stage-specific exposure to increased environmental complexity. This increased environmental
complexity may explain both cognitive challenges in the peripartum period and cognitive improvements with increased parity in middle and late life. Neural and cognitive
changes across the maternal lifespan also likely interact with the major hormonal events of pregnancy, birth, lactation, perimenopause, and menopause, as well as the
simultaneous stages of infant development. The influence of these interacting factors requires further investigation.

decrements, in addition to self-reported memory decrements during pregnancy [13-19]. Three
meta-analyses have synthesized the evidence for cognitive changes across pregnancy
[3,20,21], revealing consistent memory decrements, strongest in the third trimester [3]. This is
consistent with the rodent literature suggesting a cognitive decrement in the final week of
pregnancy (equivalent to the third trimester of human pregnancy) [22-24]. In humans, these
decrements are subtle and remain within the normative range of general cognitive functioning
and memory [3,25]. As such, while cognitive decrements may be salient to pregnant people
themselves as a change from their own prepregnancy baseline, they are unlikely to significantly
disrupt daily life [3,25].
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Unlike in pregnancy, where subjective cognitive decrements are found together with objective
measures, postpartum mothers consistently report poorer memory [14,18,19,26,27] in the
absence of cognitive differences [12]. Overall, the evidence for no cognitive decrement in moth-
erhood [12,14,17-19,26,28-37] outweighs that showing significant differences [27,38,39]. This
discrepancy suggests that mothers consistently report subjective memory impairments
without measurable decrements in objective performance. Figure 2 shows a detailed breakdown
of studies investigating cognition in the postpartum period. See Box 2 for a discussion of the
potential impacts of sleep, mood, and nulliparous control groups on these effects.

Trajectory of cognitive renormalization

A cognitive renormalization trajectory appears to occur in both rodent and human mothers, with
initial cognitive decrements in late pregnancy and the early postpartum, followed by cognitive
recovery, and even some cognitive improvements at the time of weaning. Compared with virgin
females, maternal rats show impaired spatial memory in late pregnancy and the early postpartum
period [22,24] and improved memory performance [40-45], social learning [46], and reduced
anxiety and stress [47,48], after weaning. Collectively, these results suggest that rodent mothers
experience some cognitive deficits in late pregnancy and the early postpartum, but that these
decrements are resolved and that cognition may even become enhanced following weaning
and into the late postpartum period. The emerging human matrescence literature also indicates
a similar cognitive trajectory. The few studies that do show cognitive decrements in the postpartum
examine mothers at 3-8 months postpartum [27,38,39,49]. Conversely, studies reporting cogni-
tive improvements examine mothers a year or more after giving birth [34,35,50], consistent with
common timelines for weaning in human mothers.

The timing of this cognitive trajectory is also consistent with neuroplasticity in the maternal brain.
Importantly for understanding cognition, the hippocampus, a brain region crucial for memory
ability, shows dramatic restructuring across the peripartum period in both humans and rodents.
For example, in rats, hippocampal neurogenesis is decreased during the early postpartum period
[51], followed by increased hippocampal long-term potentiation and improved hippocampal-
dependent memory following weaning [45], aligning with the cognitive trajectory in maternal
rodents [23,24]. Similarly, in humans, the hippocampus shows reductions in grey matter across
pregnancy [1] and subsequent increases in the postpartum period [1,52]. Altered hippocampal
structure and function are potentially related to changes in maternal cognition across pregnancy
[3], however, the associations between neural and cognitive adaptations have not been conclu-
sively shown. Therefore, care must be taken when extrapolating neural outcomes to cognitive
changes, and vice versa, and when speculating about causal or mechanistic associations.
Additionally, lower hippocampal volume at 4 months postpartum is associated with positive
mother—child interactions [53], suggesting hippocampal changes have broad implications in mater-
nal caregiving behavior, beyond cognition. In addition to maternal brain changes, many biological,
psychosocial, and environmental transitions occur in concert, which likely have simultaneous and
interacting impacts on maternal cognition across the peripartum period.

Biological factors

Hormonal fluctuations have been commonly cited as the causal factor for cognitive changes
during the transition to motherhood [17,54]. Levels of estrogens and progesterone, which
increase during pregnancy and drop dramatically following birth, have been implicated in memory
function outside of the context of pregnancy and motherhood. Like in other sensitive periods of
hormonal fluctuation (e.g., adolescence [55]), neuroplasticity across pregnancy may come at an
initial cost to memory, with benefits emerging longer-term, perhaps representing the reprioritization
of crucial information (e.g., infant-related) or cognitive domains (e.g., social cognition) [20].
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However, studies linking pregnancy hormones and cognition have not convincingly shown a causal
association [25,54,56]. During late pregnancy and the first postpartum weeks, memory perfor-
mance does not appear to correlate with levels of estradiol, progesterone, testosterone, cortisol,
or dehydroepiandrosterone [57]. Similarly, no association has been found between levels of oxytocin
and cognitive performance in women tested during pregnancy and at 3 months postpartum [54].
The few studies that have measured cognitive performance and hormone levels suggest that
hormone exposure may not correlate with cognitive performance in pregnancy and the postpartum
period [25,56).

Psychosocial factors

In addition to extreme biological changes, the transition to motherhood contains dramatic
environmental and psychosocial changes, which may also contribute to cognitive decrements
in pregnancy. The emotional adjustment required to prepare for a new baby’s arrival leads
many expectant mothers to be preoccupied with this major life transition [58]. This preoccupation
may account for the self-reported memory deficits in pregnancy, as attention is shifted away from
information and tasks unrelated to motherhood [13]. Pregnancy can also be accompanied by
additional stressors, including changing relationships, body image, adjustment to a new social
role, and worry about labor and delivery [13,59]. The shift in attention, motivation, and priorities
towards one’s child may also account for objective cognitive decrements in pregnancy, with
expectant mothers assigning laboratory testing a lower priority [60]. This is consistent with a
dampened stress response to cognitive testing shown by pregnant women, where a certain
amount of stress is required for optimal cognitive performance [20,61]. A recent study elegantly
showed pregnancy-related improvements in hippocampal-dependent spatial associative mem-
ory [11]. Specifically, when compared with nulliparous control women, pregnant women in their
third trimester showed both a general enhancement in learning and retention and a specific
enhancement in memory of infant-related stimuli. This suggests both an increase in attention
towards relevant stimuli as well as general improvements in hippocampal-dependent memory.

Environmental factors

In addition to the challenges of low mood and poor sleep, new mothers are expected to under-
take more responsibilities. Simultaneously tackling these challenges means that new mothers
experience increased cognitive load whilst operating with fewer emotional and physical
resources. This increased cognitive load represents a cognitive challenge. For example, leaving
the house with an infant requires mothers to remember a multitude of items (a favorite toy, a
change of clothes, a bottle) and to flexibly organize plans around naps and feeding timings.
Furthermore, these responsibilities emerge in addition to a mother’s own personal needs and
existing responsibilities. An increased cognitive load creates more opportunities to forget an
item or task. Mothers may also develop a higher sensitivity to minor memory or concentration
lapses, which would have otherwise been ignored or considered inconsequential before preg-
nancy. Continuous re-evaluation and heightened awareness of memory ability may also be ampili-
fied by the societal expectation of cognitive decline for mothers in some cultures [62], contributing to
a confirmation bias. Importantly, whilst in many cultures mothers are expected to undertake the ma-
jority of these responsibilities, this increased cognitive load likely impacts parents of all genders who

Figure 2. Cognition in the postpartum period. Results from the literature describing cognitive changes and null results in postpartum mothers
[1,12,17-19,26-39,49,50,56,62,66,119]. Direction of results indicates which group or timepoint showed better performance; for example, ‘Controls>postpartum’
indicates superior performance in the control group, ‘n.s.” indicates non-significance. The significant differences column indicates the cognitive domain(s) that showed
significant effects. Significant effects that suggest cognitive improvement in the postpartum period are colored pink and those that suggest deficits are colored grey.
‘No significant differences’ indicates the cognitive domains that did not show significant effects, shown in blue. Sleep and Mood indicate whether a study has collected
(Y) measures of sleep or mood, or not (N).
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Box 2. Important methodological considerations
Mood and sleep

There is a link between mood and memory, such that higher levels of depression are associated with poorer memory perfor-
mance [123]. People with depression are also more likely to self-report memory problems than people without depression
[124], even after adjusting for objective cognitive performance [125]. A similar link exists between cognition and sleep, where poor
sleep is associated with poorer cognitive performance and self-reported memory [126,127]. Given that mood disorders and
sleep disturbance are common during pregnancy and the postpartum period, cognitive changes observed in the peripartum pe-
riod may also be related to mood and sleep disturbance. Associations between subjective memory and disturbances in sleep
and mood have been consistently demonstrated in the first year postpartum [12,18,19,26,29]. Some studies find that peripartum
cognitive decrements disappear when including mood and sleep as covariates [128], or that cognitive differences are strongest in
women with mood or sleep disturbance [129]. However, many studies of peripartum cognition do not report or account for sleep,
depression, or anxiety outcomes and further research is essential to further understand these associations.

Never-pregnant controls

Many studies of cognition in motherhood share one large problem: the control group consists of women who are not currently
pregnant/postpartum but who are mothers and have experienced a previous pregnancy. Studies in rodents [25,82] and humans
[101,102] suggest that reproductive experience confers cognitive benefits that are long-lasting, perhaps even permanent.
Motherhood may also offer a cumulative effect on cognition, with multiparous women outperforming primiparous postpartum
women [56]. Cumulative cognitive improvements with increasing parity have also been found in rats [25,40,43]. Given the
long-term and cumulative impact of motherhood on cognition, control groups consisting of never-pregnant women are critical
to achieving reliable comparisons and meaningful results.

Richly phenotyped datasets

Openly available datasets represent a valuable resource for population neuroscience, where large sample sizes provide
requisite statistical power and robustness. The majority of maternal brain studies beyond the postpartum period characterize
middle-aged parental effects using data sourced from one dataset: the UK Biobank (a large sample of adults from the
United Kingdom) [101,110-112]. These studies, and others [102,118], are novel and provide valuable insight about the
long-term impacts of parenthood. However, sparse information about caregiving and the limited racial and ethnic diversity of
these samples limits interpretability. Specially collected data is needed to further characterize long-term brain changes in human
parenthood, with rich phenotyping of parental factors (e.g., involvement in childcare, hormone levels, grandparenthood).

Box 3. Cognitive and brain changes in early fatherhood

Compared with the already scarce literature describing neurocognitive changes across motherhood, even fewer studies
investigate these adaptations in fathers. Only two studies have indirectly investigated cognition in early fatherhood. When
comparing working memory in mothers and fathers longitudinally from pregnancy to 6 weeks postpartum, no differences
between mothers and fathers were found at any timepoint, nor any change across time [130]. This study used fathers as a
control group for practice effects and did not compare the cognitive performance of fathers to childless men. The other
study found that fathers performed worse on a measure of logical memory the day following their child’s birth, compared
with nonpregnant control women, and interpreted this difference as related to fathers’ stress and anxiety [30].

A handful of studies have examined changes to fathers’ brain structure and function [102,118,131-1383]. Similar to
mothers, first time fathers show longitudinal reductions in grey matter volume after the birth of their child [133] and larger
volume reductions in a subsample of these fathers were associated with stronger neural responses to pictures of their own
child [134]. Additionally, longitudinal changes in paternal grey matter volume across the first 4 months postpartum are as-
sociated with sensitive paternal caregiving behavior [132]. Fathers who spend more time in direct childcare also show pat-
terns of brain activation resembling maternal brain changes [131], consistent with the preclinical literature [40,135,136],
showing that neural changes can arise environmentally, flexibly activated by exposure to offspring [2]. Whilst these neural
adaptations appear to support the behaviors of paternal caregiving, the associations between neural and cognitive adap-
tations are unclear in human fathers. See recent reviews for more details on the neurobiological changes in fathers [137]
and for neuroendocrine changes supporting paternal care [138,139].

The association between caregiving experience and enrichment is present in non-human fathers involved in the rearing of off-
spring. Paternal marmosets experience similar brain changes to animals living in enriched environments and this effect is
mediated by the amount of father-infant contact [83]. Furthermore, the degree of neural adaptation is proportionate to the
amount of time spent in primary care: exposure to unfamiliar pups for 10 minutes per day for 4 days is sufficient to induce
neural changes and improve spatial memory for nonparental male rats [135]. Future research that includes nonbirthing parents
of all sexes will allow the investigation of the enriched environment hypothesis, uncovering whether and to what degree
cognitive and neural effects occur in the absence of pregnancy and the relative influence of endocrine and experiential factors.
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share in the mental load of caregiving. However, our understanding of the impact of parenthood on
fathers and nonbirthing mothers is far less established and requires increased attention (Box 3).

New parents may adapt to the cognitive challenges of the postpartum period by developing
mechanisms, tools, or strategies for maintaining their cognitive abilities. One such adaptive change
may be an increase in executive functioning, critical for adaptive maternal behavior in humans
[63-65], including the capacity for self-regulation and managing competing demands [64].
Increased reliance on executive functioning may strengthen cognitive abilities, which could
generalize beyond the caregiving context. Recent evidence suggests that compared with nullipa-
rous controls, mothers show superior executive function and attention 3 years following birth
[66]. Therefore, executive function is a cognitive domain, which is both important for understanding
maternal care and may show improved ability over time. In addition to cognitive adaptations,
mothers may also show neural compensation, where brain networks are activated in different
ways, or additional neural mechanisms are recruited to support behavior [67]. This hypothesis is
supported by studies of cognition and brain function in early motherhood [68,69,140], showing
differences in resting-state and task-related brain activation in the absence of differences in task
performance.

Sustained environmental complexity

Cognitive adaptation could be a mechanism for cognitive improvements in the postpartum period
and beyond, as mothers continue to access advantageous adaptive and compensatory mecha-
nisms. If so, the next question is when the benefits might begin to outweigh the challenges. The chal-
lenges of early motherhood resolve slowly over time, when infants start to sleep through the night, or
when children start school, or perhaps even when they leave home. When considering the cumula-
tive effects of multiparity, the challenges of early motherhood becomes more intense by the
overlapping needs of infants born close together. Likewise, the experiences of early motherhood
may be extended by children born further apart. The reality is that we do not know how long this
stage of motherhood lasts, but the enduring environmental challenge of motherhood may represent
a learning environment that is sustained for two or more decades of an individual’s life.

Whilst mothers may build resilience over time, and sleep and social support may increase as the
child develops, the environmental complexity of motherhood never fully returns to pre-child levels.
As children develop, their needs change, requiring continuous behavioral adaptations from
mothers. For example, the tasks required to care for a fully dependent newborn are very different
from those required to care for a highly mobile toddler, or a school-aged child, and different still
from those required to care for an adolescent or young adult. In this way, the environmental
complexity of motherhood is influenced by the developmental stages of the child (Figure 1), result-
ing in continual adjustment to an ever-changing environment. Each subsequent child further
increases this environmental complexity, requiring simultaneous care across different stages of
child development. Additionally, as individual children display different temperaments and elicit
distinctive behaviors in their mothers [70], the skills and strategies learned with one child may
not generalize to the next, requiring a mother to relearn and dynamically re-evaluate parenting
styles.

Environmental enrichment

The preclinical literature suggests that motherhood influences the rodent brain in a manner similar
to the influence of an enriched environment. Environmental enrichment refers to housing
conditions that involve enhanced sensory, cognitive, motor, or social stimulation [71]. Enriched
environments stimulate synaptogenesis [72,73], result in heavier brain weights [74], more
complex dendritic branching [75], and may provide a protective effect against brain ageing
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[76]. Enriched animals also perform better on tasks of learning and memory [74] and show
enhanced hippocampal neurogenesis [77,78].

Foundational research suggests that maternal animals show cognitive and neural outcomes akin to
enriched environments [79,80]. Environmentally impoverished postpartum rats show greater corti-
cal depth compared with rats in enriched environments [79], suggesting the maternal environment
was enriching enough to negate the detrimental effects of an impoverished physical environment.
This result was replicated, with maternal rats showing greater mean cortical depths than virgin
females across all housing conditions [80]. Enhanced learning and memory, and increased
neuroplasticity in maternal rodents relative to virgin females, are widely interpreted as resulting
from an enriching maternal environment [81,82]. The association between caregiving experience
and enrichment is also present in primate fathers involved in the rearing of offspring. Paternal
marmosets experience similar brain changes to animals living in enriched environments and this
effect is mediated by the amount of father-infant contact [83].

Taken together, these studies demonstrate that reproductive experience confers neural and
cognitive benefits similar to an environmental enrichment, suggesting that maternal experience
may be stimulating and protective for brain health. We suggest that this may extend to human
parenthood. Compared with laboratory rodents, humans live vastly more complex lives and argu-
ably already live in highly ‘enriched’ environments. In the same way that reproductive experience
enriches the ‘housing conditions’ of rodents, human parenthood increases daily sensory, cogni-
tive, social, and environmental complexity, though perhaps to a lesser extent. Two major
elements of an enriched environment are complexity and novelty [71], which are both increased
in the human caregiving environment, where new mothers are faced with novel child-related
tasks and behaviors.

Cognitive reserve

Environmental enrichment is primarily described in animal models; in humans, a related concept
is cognitive reserve [84]. Cognitive reserve refers to the brain’s resilience to damage, iliness, or
cognitive decline by recruiting pre-existing cognitive processes [85]. The ability to flexibly recruit
cognitive processes contributes to maintained function in the face of pathology and the ageing
process [85]. For example, in healthy ageing, individuals with high cognitive reserve experience
slower decline in memory, executive function, and language skills [86,87]. Cognitive reserve is in-
creased in people exposed to challenges and complex environments. Higher levels of education
[88], occupational attainment and complexity [89,90], being more socially active [91], engaging in
cognitively demanding hobbies [92], and learning a foreign language [93] are all related to
increased cognitive reserve in late life. We suggest that motherhood comparably exerts environ-
mental complexity across the lifespan. Consider the parallels with occupational complexity: if the
type of job a person worked across their lifespan contributes to their cognitive reserve in late
life, then we would expect that motherhood, which provides novelty and complexity, requires
a similar time commitment and lasts for decades, would similarly increase cognitive reserve.
In fact, the idea that parenthood adds to cognitive reserve has already been acknowledged
in the cognitive reserve literature, albeit indirectly [94]. The Cognitive Reserve Index Questionnaire
(CRIq) is a standardized measure of the cognitive reserve accumulated by an individual across
their lifespan, based on their educational attainment, working activity, and leisure time. Individuals
with more children, or more frequent caregiving responsibilities (for children or the elderly)
are allocated a higher score on the CRIq, reflecting the impact of these activities on cognitive
reserve [94]. In this way, the very same cognitive load that poses a challenge in early mother-
hood may be beneficial in the long-term, by exerting sustained environmental complexity
across the lifespan.

¢? CellPress

Trends in Cognitive Sciences, Month 2022, Vol. xx, No. xx 9



CellPress logo

¢ CellPress Trends in Cognitive Sciences

Motherhood and cognition across the lifespan

The positive association between reproductive experience and neurocognitive improvements is
well documented and widely accepted in rodents. Maternal rodents show improved spatial
learning and memory in mid-life, reduced hippocampal amyloid deposits, and attenuated
memory decline in late life [40,41,43-45,81]. The understanding that reproductive experience is
beneficial for long-term cognition and brain health in rodents is uncontroversial, with hormonal
and environmental changes that interact to produce a maternal brain that is healthier, more
flexible, and more resistant to age-related decline [40,43].

By contrast, the long-term association between cognitive performance and motherhood is less
clear and understudied in humans. In older women, having fewer or no children is associated
with better cognition in some studies [95,96], but not in others [97,98]. There also appears to
be a distinction between studies examining biological and social determinants of motherhood
and their relation to cognition. For example, some studies focus on biological factors such as
age at first/last birth, breastfeeding duration, and other proxies for lifetime exposure to endoge-
nous estrogens, whereas others focus on parity, encompassing the social exposure to children
and the caregiving environment. Among parous women, younger age at first pregnancy is asso-
ciated with worse cognition in late life [98] and later age at first and last pregnancy is associated
with improved cognition in late life [99]. However, it is also important to recognize these biological
associations in the context of broader social factors. For example, older age at first pregnancy is
associated with higher socioeconomic status, income, educational attainment, and more participa-
tion in the labor force, factors that are all related to higher cognitive performance throughout the
lifespan and greater cognitive reserve in late life [94].

Compared with these biologically focused studies, a growing body of research examining parity
suggests that motherhood is related to improved cognition in middle [97,99-101] and late life
[102]. One study demonstrated this distinction in a sample of mid-life women (n = 326, age =
56.7 + 2.5 years), showing a positive association between parity and improved verbal memory
performance [97]. By contrast, memory performance was not related to lifetime estrogen expo-
sure, including menopausal status, use of hormonal replacement therapy, and reproductive
period. As such, it appears that the biosocial influence of the caregiving environment impacts
long-term maternal memory across the lifespan, rather than solely the biological exposure to
estrogens [97]. Furthermore, it appears that the positive association between parity and cog-
nition is nonlinear: in a large sample of mid-life women (n = 6123, mean,ge = 55.0 years) and
men (1 = 5110, mean,ge = 54.7 years), parity and cognition showed a U-shaped association,
where both lower parity and grand multiparity (more than five children) were associated with
worse cognitive performance and optimal performance was observed in mothers and fathers
with two to three children [99]. The association between grand multiparity and poorer cognition
was largely accounted for by socioeconomic status, whereas the association between child-
lessness and poorer cognition was strengthened when controlling for socioeconomic status.

In another large sample of mid-life women (n = 160 077, age = 56.7 + 7.9 years) and men (n= 143
119, age = 57.5 + 8.1 years), higher parity was again associated with enhanced cognitive perfor-
mance for both mothers and fathers [101]. Mothers and fathers with more children showed
improved visual memory and processing speed. In both of these studies, cognitive improvements
with parity were seen in parents of both sexes, with stronger effects detected in fathers [101].
Since males do not experience the same physiological changes that birth-giving parents
do, these results indicate that the environmental changes of parenthood are important in the
association between parity and cognition, at least in mid-life. In the only study to date in late-life
mothers (n = 235, age = 73.86 + 3.50 years), we found that parity was positively associated
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with cognition, such that mothers with more children performed better on a task of verbal memory
[102]. Consistent with this result, higher parity was also positively associated with the thickness of
the parahippocampal gyrus, a brain region associated with memory performance.

In addition to cognition in healthy ageing, motherhood also shows a complex relationship with
Alzheimer’s disease (AD), with many inconsistencies in the literature [100,103]. Increased parity
is associated with more severe AD pathology [104] and earlier AD onset [105], but not in all
studies [106]. Interestingly, dementia risk also shows a U-shaped association with parity for
women and men [106], with the lowest risk in those with two children. Apolipoprotein E
(APOE) ¢4 allele is a major genetic risk factor for AD, which interacts with parity to influence
age of AD onset [107,108]. Compared with women without an APOE-¢4 allele, women with
one ¢4 allele had on average one more child and those with two €4 alleles had 3.5 more children
[109]. It is also possible that the association between parity and AD is influenced by fertility: not
that having more children increases the risk of AD, but that those who are most at risk (APOE-
€4 carriers) are able to have more children. Taken together, genotype, parity, and lifetime
estrogen exposure may interact to affect health later in life and should be taken into account
in future studies.

The consistent U-shaped associations between parity and cognition, dementia risk, and brain
structure may represent the myriad of social factors involved in parenthood, including the impact
of high parity on financial pressures and increased stress [106]. Evidence from maternal rodents
suggests that the beneficial effect of motherhood on hippocampal function and memory perfor-
mance are abolished in maternal rats placed under high stress [45], suggesting that motherhood
may only be enriching under optimal conditions. Furthermore, when interpreting findings from
these large datasets it is important to note that the majority of participants in these samples
have two to three children. Therefore, the confidence in predictions from the tails of these distri-
butions is impacted by complex sociodemographic factors and the reliability of statistical
estimates themselves. Furthermore, we must also consider the potential factors causing people
to not have children, including the influence of genetic or other biological factors influencing
fertility. In other words, the U-shaped distribution in cognitive performance and dementia risk
is difficult to interpret until more richly phenotyped and representative samples are collected
and/or made available.

Parity and brain changes across the lifespan

Recent evidence suggests that motherhood confers life-long changes to the structure of the
human brain. Four studies of brain age have explored grey matter differences in middle-aged
mothers [101,110,111] and fathers [101] and white matter differences in middle-aged mothers
[112]. Brain age is a metric derived from MRI brain scans [113], using machine learning to measure
deviations from normative ageing trajectories. The difference between chronological age and esti-
mated age, based on brain structure, is considered a promising biomarker for accelerated ageing,
AD, and cognitive impairment [113].

In middle age, mothers with more children show ‘younger-looking’ brain structure, suggesting
a neuroprotective effect of motherhood [110], specifically in striatal and limbic regions [111].
These circuits are involved in reward processing and reinforcement learning, crucial for maternal
behaviors in rodents [114,115] and humans [1]. Mothers also show a negative association between
hippocampal brain age and parity [111]. This result is consistent with grey matter changes in the
parahippocampal gyrus during pregnancy [1] and the postpartum period [52]. The only study of
late-life parental brain structure [102] also found a positive association between parity and cortical
thickness in the parahippocampal gyrus of elderly mothers. Rodent mothers show enhanced
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hippocampal neurogenesis in middle age in parous relative to nulliparous rats [116] and fewer am-
yloid deposits in the hippocampus of multiparous relative to primiparous and virgin animals
[43,44]. Due to its correlation with memory function and dementia risk [103], hippocampal volume
is often used as a proxy for predicting brain health, suggesting parity may have a similarly beneficial
impact on brain health in mid- and late-life mothers. Mothers to more children also show ‘younger’
white matter brain age [100] in the corpus collosum, consistent with increased myelination observed
in healthy pregnant rats [117].

In the only study of late-life maternal brain function, patterns of brain activity were compared with
three models of age-related decline, to test the hypothesis that motherhood confers functional
neuroprotection on the late-life maternal brain [118]. For mothers with more children, patterns of
functional connectivity related to parity were in the opposite direction to those usually associated
with age-related cognitive decline, suggesting that motherhood may be beneficial for brain function
in late life [118]. These results are the first indication that the challenges and complexity of the
parenting environment may contribute to a mother’s cognitive reserve across the lifespan [85].
Future research is needed to determine how the changes of motherhood endure throughout the
lifespan and impact ageing trajectories.

Concluding remarks

The rapid and extreme hormonal and environmental changes of pregnancy mark the transition to
motherhood as a major biosocial life event, representing a sensitive neurocognitive developmen-
tal period: matrescence. If matrescence is framed as a sensitive neurodevelopmental period,
many new questions emerge, including how this period influences the rest of a person’s life
(see Outstanding questions). The number and timing of pregnancies a person has is influenced
to some degree by biology and further influenced by sociodemographic factors, including socio-
economic status, cultural norms, and access to contraception. As such, parenthood is an
‘optional’ life stage which, due to choice, biology, and circumstance, does not occur for all
people. We must be careful not to frame those without children as having ‘missed’ a developmental
stage. However, it is also important to consider that the late-life parent is the most common form of
late-life person and that our understanding of normative ageing trajectories is based on samples
where elderly parents comprise the vast majority. A lack of understanding of how motherhood
impacts the ageing process therefore also has consequences for the life-long health and wellbeing
of those who are not parents.

Here, we outline a framework for understanding maternal neurocognition across the lifespan. Mother-
hood involves increased cognitive load, with novel tasks and responsibilities, requiring continuous be-
havioral adaptation. The increased cognitive load across the peripartum period provides an initial
challenge, requires continuous cognitive adaptation, and results in life-long environmental complexity
and increased cognitive reserve in late life. Combining evidence from animal and human studies, we
propose that the increased lifetime complexity of motherhood may provide a form of enriched environ-
ment, positively contributing to cognitive reserve and resilience to the ageing process.
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