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Individual-level prediction is a fundamental goal in systems neu-
roscience and is important for precision medicine1–4. Therefore, 
there is growing interest in leveraging brain imaging data to predict 

non-brain-imaging phenotypes (for example, fluid intelligence or clin-
ical outcomes) in individual participants. To date, however, most pre-
diction studies are underpowered, including less than a few hundred 
participants. This has led to systemic issues related to low reproduc-
ibility and inflated prediction performance5–8. Prediction perfor-
mance can greatly improve when training models with well-powered 
samples9–12. The advent of large-scale population-level human neuro-
science datasets (for example, UK Biobank and Adolescent Brain and 
Cognitive Development (ABCD)) is, therefore, critical to improving 
the performance and reproducibility of individual-level prediction. 
However, when studying clinical populations or addressing focused 
neuroscience topics, small-scale datasets are often unavoidable. Here 
we propose a simple framework to effectively translate predictive 
models from large-scale datasets to new non-brain-imaging pheno-
types (hereafter shortened to ‘phenotypes’) in small data.

More specifically, given a large-scale brain imaging dataset 
(N > 10,000) with multiple phenotypes, we seek to translate models 
trained from the large dataset to new unseen phenotypes in a small 
independent dataset (N ≤ 200). We emphasize that the large and small 
datasets are independent. Furthermore, phenotypes in the small inde-
pendent dataset do not have to overlap with those in the large data-
set. In machine learning, this problem is known as meta-learning, 
learning-to-learn or lifelong learning13–16 and is also closely related 

to transfer learning17–19. For example, meta-learning can be applied 
to a large dataset (for example, 1 million natural images) to train a 
deep neural network (DNN) to recognize multiple object categories 
(for example, furniture and humans). The DNN can then be adapted 
to recognize a new, unseen object category (for example, birds) with 
a limited set of samples20–22. By learning a common representation 
across many object categories, meta-learning is able to adapt the 
DNN to a new object category with relatively few examples21–23.

The key observation underpinning our meta-learning approach 
is that the vast majority of phenotypes are not independent but are 
inter-correlated (Supplementary Fig. 1). Indeed, previous studies 
have discovered a relatively small number of components that link 
brain imaging data and an entire host of phenotypes, such as cogni-
tion, mental health, demographics and other health attributes24–27. 
Therefore, a unique phenotype X examined by a small-scale boutique 
study is probably correlated with (but not the same as) a particular 
phenotype Y in some pre-existing large-scale population dataset. 
Consequently, a machine learning model that has been trained on 
phenotype Y in the large-scale dataset might be readily translated to 
phenotype X in the boutique study. In other words, meta-learning 
can be instantiated in human neuroscience by exploiting this exist-
ing correlation structure, a process we refer to as ‘meta-matching’.

Meta-matching can be broadly applied to different types of mag-
netic resonance imaging (MRI) data. Here, we focused on the use of 
resting-state functional connectivity (RSFC) to predict phenotypes. 
RSFC measures the synchrony of resting-state functional MRI 
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(fMRI) signals between brain regions28–30 while participants lie at rest 
without any ‘extrinsic’ task. RSFC has provided important insights 
into human brain organization across health and disease31–35. Given 
any brain parcellation atlas36–39, a whole-brain RSFC matrix can 
be computed for each participant. Each entry in the RSFC matrix 
reflects the functional coupling strength between two brain parcels. 
In recent years, there is increasing interest in the use of RSFC for 
predicting phenotypes (for example, age or cognition) of individual 
participants—that is, functional connectivity (FC) fingerprint40–45. 
Thus, our study will use RSFC-based phenotypic prediction to illus-
trate the power and field-wide utility of meta-matching.

To summarize, we propose meta-matching, a simple frame-
work to exploit large-scale brain imaging datasets for boosting 
RSFC-based prediction of new, unseen phenotypes in small data-
sets. The meta-matching framework is highly flexible and can be 
coupled with any machine learning algorithm. Here, we considered 
kernel ridge regression (KRR) and fully connected DNN, which 
we previously demonstrated to work well for RSFC-based behav-
ioral and demographics prediction11. We developed two classes of 
meta-matching algorithms: basic and advanced. Our approach was 
evaluated using 36,848 participants from the UK Biobank25,46 and 
1,019 participants from the HCP47.

results
UK Biobank experimental setup. We used 55 × 55 RSFC matrices 
from 36,848 participants and 67 phenotypes from the UK Biobank46. 
The 67 phenotypes were winnowed down from an initial list of 
3,937 phenotypes by a systematic procedure that excluded brain 
variables, binary variables (except sex), repeated measures and mea-
sures missing from too many participants. Phenotypes that were not 
predictable even with 1,000 participants were also excluded; note 
that these 1,000 participants were excluded from the 36,848 partici-
pants (Methods).

The data were randomly divided into training (N = 26,848; 33 
phenotypes) and test (N = 10,000; 34 phenotypes) meta-sets (Fig. 
1a). No participant or phenotype overlapped across the training and 
test meta-sets. Figure 1b shows the absolute Pearson’s correlations 
between the training and test phenotypes. The test meta-set was 
further split into K participants (K-shot; K = 10, 20, 50, 100 and 200) 
and remaining 10,000 − K participants. The group of K participants 
served to mimic traditional small-N studies.

For each phenotype in the test meta-set, a classical machine 
learning baseline (KRR) was trained on the RSFC matrices of the 
K participants and applied to the remaining 10,000 − K partici-
pants. Hyperparameters were tuned on the K participants. We note 
that small-N studies obviously do not have access to the remain-
ing 10,000 – K participants. However, in our experiments, we used 
a large sample of participants (10,000 − K) to accurately establish 
the performance of the classical machine learning baseline. We 
repeated this procedure 100 times (each with a different sample of 
K participants) to ensure robustness of the results48.

KRR was chosen as a baseline because of the small number of 
hyperparameters, which made it suitable for small-N studies. We 
also previously demonstrated that KRR and DNNs can achieve 
similar prediction performance in FC prediction of behavior and 
demographics in both small-scale and large-scale datasets11.

Basic meta-matching outperforms classical KRR. The meta- 
matching framework is highly flexible and can be instantiated with 
different machine learning algorithms. Here, we considered KRR 
and fully connected DNN, which we previously demonstrated to 
work well for RSFC-based behavioral and demographics predic-
tion11. We considered two classes of meta-matching algorithms: 
basic and advanced (Fig. 2).

In ‘basic meta-matching (KRR)’, for each phenotype in the train-
ing meta-set we trained a KRR model to predict the phenotype from 

the RSFC matrices. We then applied the 33 trained KRR models to 
the RSFC of the K participants (from the test meta-set), yielding 
33 predictions per participant. For each test meta-set phenotype, 
we picked the prediction (out of 33 predictions) that predicted the 
test meta-set phenotype the best in the K participants. The cor-
responding KRR model (yielding this best prediction) was used 
to predict the test phenotype in the remaining 10,000 − K partici-
pants. We also repeated the above procedure using a generic fully 
connected feed-forward DNN instead of KRR, yielding the ‘basic 
meta-matching (DNN)’ algorithm. The only difference is that, 
instead of training 33 DNNs (which would require too much com-
putational time), a single 33-output DNN was used (Methods).

Figure 3a shows the prediction accuracies (Pearson’s correla-
tion coefficient) averaged across 34 phenotypes and 10,000 − K 
participants in the test meta-set. The box plots represent 100 ran-
dom repeats of K participants (K-shot). Bootstrapping was used 
to derive P values (Fig. 3b, Supplementary Fig. 4 and Methods). 
Multiple comparisons were corrected using the false discovery rate 
(FDR, q < 0.05). Both basic meta-matching algorithms were signifi-
cantly better than the classical (KRR) approach across all sample 
sizes (Fig. 3b). The improvements were large. For example, in the 
case of 20-shot (a typical sample size for many fMRI studies), basic 
meta-matching (DNN) was more than 100% better than classical 
(KRR): 0.124 ± 0.016 (mean ± s.d.) versus 0.052 ± 0.007. Indeed, 
classical KRR required 200 participants before achieving an accu-
racy (0.120 ± 0.005), which was similar to basic meta-matching 
(DNN) with 20 participants.

When using the coefficient of determinant (COD) as a metric 
of prediction performance (Supplementary Figs. 5 and 6), all algo-
rithms performed poorly (COD ≤ 0) when there were 20 or fewer 
participants (K = 10 or 20), suggesting worse than chance pre-
diction. When there were at least 50 participants (K ≥ 50), basic 
meta-matching algorithms became substantially better than the 
classical (KRR) approach. However, the improvement was only sta-
tistically significant starting from around 100–200 participants.

To summarize, basic meta-matching performed well even with 
ten participants if the goal was ‘relative’ prediction (that is, Pearson’s 
correlation49). However, if the goal was ‘absolute’ prediction (that is, 
COD7), then basic meta-matching required at least 100 participants 
to work well.

Advanced meta-matching provides further improvement. We 
have demonstrated that basic meta-matching led to significant 
improvement over the classical (KRR) baseline. However, in prac-
tice, there might be significant differences between the training 
and test meta-sets, so simply picking the best phenotypic predic-
tion model from the training meta-set might not generalize well to 
the test meta-set. Thus, we proposed two additional meta-matching 
approaches: ‘advanced meta-matching (fine-tune)’ and ‘advanced 
meta-matching (stacking)’.

As illustrated in Fig. 2, the procedure for advanced meta-matching 
(fine-tune) is similar to basic meta-matching (DNN). In brief, we 
trained a single DNN (with 33 outputs) on the training meta-set. 
We then applied the 33-output DNN to the K participants and 
picked the best DNN model for each test phenotype (out of 34 
phenotypes). We then fine-tuned the top two layers of the DNN 
using the K participants before applying the fine-tuned model to the 
remaining 10,000 − K participants (Methods). This approach can be 
thought of as complementing basic meta-matching with a simple 
form of transfer learning50.

In the case of advanced meta-matching (stacking), we trained 
a single DNN (with 33 outputs) on the training meta-set. We then 
applied the 33-output DNN to the K participants, yielding 33 pre-
dictions per participant. The top M predictions are then used as fea-
tures for predicting the phenotype of interest in the K participants 
using KRR. To reduce overfitting, M is set to be the minimum of 33 
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and K. For example, for the 10-shot scenario, M is set to be 10. For 
the 50-shot scenario, M is set to be 33. The DNN (which was trained 
on the training meta-set) and KRR models (which were trained on 
the K participants) were then applied to the remaining 10,000 − K 
participants (Methods). This approach can be thought of as comple-
menting basic meta-matching with the classic stacking strategy51,52.

Figure 3a shows the prediction accuracies (Pearson’s correlation 
coefficient) averaged across 34 phenotypes and 10,000 − K partici-
pants in the test meta-set. Both advanced meta-matching algorithms 
exhibited large and statistically significant improvements over 
the classical (KRR) approach across all sample sizes (Fig. 3b). For 
example, in the case of 20-shot, advanced meta-matching (stacking)  

Training set (N = 21,478) Validation set (N = 5,370)

N = 10,000 participants

K participants (K-shot)
Remaining test participants
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b
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Fig. 1 | Experimental setup for meta-matching in the uK Biobank. The goal of meta-matching is to translate predictive models from big datasets to new, 
unseen phenotypes in independent small datasets. a, The UK Biobank dataset (January 2020 release) was divided into a training meta-set comprising 
26,848 participants and 33 phenotypes and a test meta-set comprising independent 10,000 participants and 34 other phenotypes. It is important to 
emphasize that no participant or phenotype overlapped between training and test meta-sets. The test meta-set was, in turn, split into K participants 
(K = 10, 20, 50, 100 and 200) and remaining 10,000 − K participants. The group of K participants mimicked studies with traditionally common sample 
sizes. This split was repeated 100 times for robustness. b, Absolute Pearson’s correlations between phenotypes in training and test meta-sets. Each row 
represents one test meta-set phenotype. Each column represents one training meta-set phenotype. Supplementary Figs. 2 and 3 show correlation plots for 
phenotypes within training and test meta-sets. Dictionary of phenotypes is found in Supplementary Tables 1 and 2.
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was more than 100% better than classical (KRR): 0.133 ± 0.014 
(mean ± s.d.) versus 0.053 ± 0.007. Among the meta-matching 
algorithms, the advanced meta-matching algorithms were numeri-
cally better than the basic meta-matching algorithms from 20-shot 
onwards, but statistical significance was not achieved until around 
100-shot onwards (Supplementary Fig. 4b).

In the case of variance explained as measured by COD 
(Supplementary Figs. 5 and 6), all algorithms performed poorly 
(COD ≤ 0) when there were fewer than 50 participants (K < 50), 
suggesting chance or worse than chance prediction. From 50-shot 
onwards, advanced meta-matching algorithms became statisti-
cally better than the classical (KRR) approach (Supplementary 
Figs. 5b and 6b). The improvements were substantial. For exam-
ple, in the case of 100-shot, advanced meta-matching (stacking) 
was 400% better than classical (KRR): 0.053 ± 0.005 (mean ± s.d.) 
versus 0.010 ± 0.004. Among the meta-matching algorithms, the 
advanced meta-matching algorithms were numerically better 
than the basic meta-matching algorithms from 100-shot onwards, 
but statistical significance was not achieved until 200-shot 
(Supplementary Fig. 6b).

To summarize, advanced meta-matching performed well even 
with ten participants if the goal was ‘relative’ prediction (that is, 
Pearson’s correlation49). However, if the goal was ‘absolute’ predic-
tion (that is, COD7), then advanced meta-matching required at least 
50 participants to work well.

Correlations between phenotypes drive improvements. Despite 
the substantial advantage of meta-matching over classical (KRR), 
not every phenotype benefited from meta-matching. For example, 
in the case of 100-shot, the average performance (Pearson’s corre-
lation) of classical (KRR) and advanced meta-matching (stacking) 
were 0.097 ± 0.006 (mean ± s.d.) and 0.183 ± 0.007, respectively. This 
represented an average absolute gain of 0.086 (minimum = −0.023, 
maximum = 0.266) across 34 test phenotypes. In the case of COD, 
there was an average absolute gain of 0.043 (minimum = −0.012, 
maximum = 0.268) across test 34 phenotypes.

Figure 4 illustrates the 100-shot prediction performance 
(Pearson’s correlation coefficient) of four test meta-set phenotypes 
across all approaches. Supplementary Fig. 7 shows the same plot for 
COD. For three of the phenotypes (average weekly beer plus cider 
intake, symbol digit substitution and matrix pattern completion), 
meta-matching demonstrated substantial improvements over clas-
sical (KRR). In the case of the last phenotype (time spent driving 
per day), meta-matching did not yield any statistically significant 
improvement.

Given that meta-matching exploits correlations among phe-
notypes, we hypothesized that variability in prediction improve-
ments were driven by inter-phenotype correlations between the 
training and test meta-sets (Fig. 1b and Supplementary Fig. 1b). 
Figure 5 shows the performance improvement (Pearson’s correla-
tion) as a function of the maximum correlation between each test  

Train kernel ridge regression (KRR)/fully connected deep neural network (DNN) to
predict 33 non-brain-imaging phenotypes in training meta-set (N = 26,848)

Apply trained KRR/DNN to K participants (K-shot) from test meta-set yielding 33
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Fig. 2 | Application of basic and advanced meta-matching to the uK Biobank. The meta-matching framework can be instantiated using different machine 
learning algorithms. Here, we incorporated KRR and fully connected feed-forward DNN within the meta-matching framework. We proposed two classes 
of meta-matching algorithms: basic and advanced. In the case of basic meta-matching, we considered two variants: basic meta-matching (KRR) and 
basic meta-matching (DNN). In the case of advanced meta-matching, we considered two variants: advanced meta-matching (fine-tune) and advanced 
meta-matching (stacking). Both advanced meta-matching variants used the DNN. See text for more details.
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phenotype and training phenotype. Supplementary Fig. 8 shows 
the same plot for the COD. As expected, test phenotypes with 
stronger correlations with at least one training phenotype led to 
greater prediction improvement with meta-matching. Despite the 
small number of participants employed in the K-shot scenarios, 
Supplementary Fig. 9 shows that, most of the time, meta-matching 
was able to select training phenotypes that were strongly cor-
related with the test phenotypes. Interestingly, phenotypes that 
were better predicted by classical (KRR) also benefited more from 
meta-matching (Supplementary Figs. 10 and 11).

HCP experiment setup. The previous analysis (Fig. 3) suggests that 
meta-matching can perform well in the UK Biobank. However, both 
training and test meta-sets were drawn from the same dataset. To 
demonstrate that meta-matching can generalize well to a completely 
new dataset from a different MRI scanner with distinct demographics 
and pre-processing, we considered data from the HCP47. There were 
several important differences between the HCP and UK Biobank, 
including age (22–35 years in the HCP versus 40–69 years in the UK 
Biobank), pre-processing (grayordinate combined surface–volume 
coordinate system in the HCP versus MNI152 coordinate system in 
the UK Biobank) and scanners (highly customized Skyra scanner in 
the HCP versus ‘off-the-shelf ’ Skyra scanners in the UK Biobank).

We note that 55 × 55 RSFC matrices were not available in the HCP 
dataset, so the following analyses used 419 × 419 RSFC matrices 
from both UK Biobank and HCP. The training meta-set comprised 
36,847 UK Biobank participants with 419 × 419 RSFC matrices and 
67 phenotypes (Fig. 6a). The test meta-set comprised 1,019 HCP 
participants with 419 × 419 RSFC matrices and 35 phenotypes (Fig. 
6a). The 35 HCP phenotypes were winnowed down from 58 pheno-
types by excluding phenotypes that were not predictable in the full 
HCP dataset (Methods). Given that KRR was applied to the entire 
HCP dataset to select the final set of phenotypes, we note that this 
procedure is biased in favor of the KRR baseline.

Overall, the experimental setup (Fig. 6) was the same as the UK 
Biobank analyses (Figs. 1 and 2), except for the choice of train-
ing and test meta-sets. In addition, basic meta-matching (DNN) 
and advanced meta-matching (stacking) were the most promis-
ing approaches among the basic and advanced meta-matching 
approaches, respectively, in the UK Biobank (Fig. 3), so we will 
focus on these two approaches.

Meta-matching outperforms classical KRR in the HCP. Figure 7a 
shows the prediction accuracies (Pearson’s correlation coefficient) 
averaged across 35 phenotypes and 1,019 − K participants in the 
HCP test meta-set. The box plots represent 100 random repeats of 
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Classical (KRR) vs basic meta-matching (DNN) * ** *** *** ***
Classical (KRR) vs advanced meta-matching (fine-tune) *** *** *** *** ***
Classical (KRR) vs advanced meta-matching (stacking) ** *** *** *** ***

10 20 50 100 200

Number of participants (K participants or K-shot)

0

0.05

0.10

0.15

0.20

0.25a

b

P
re

di
ct

io
n 

pe
rf

or
m

an
ce

 (
co

rr
el

at
io

n)

Classical (KRR)

Basic meta-matching (KRR)

Basic meta-matching (DNN)

Advanced meta-matching (fine-tune)

Advanced meta-matching (stacking)

Fig. 3 | Meta-matching reliably outperforms predictions from classical Krr in the uK Biobank. a, Prediction performance (Pearson’s correlation) 
averaged across 34 phenotypes in the test meta-set (N = 10,000 − K). The K participants were used to train and tune the models (Fig. 2). Box plots 
represent variability across 100 random repeats of K participants (Fig. 1a). Whiskers represent 1.5 times the interquartile range. b, Statistical difference 
between the prediction performance (Pearson’s correlation) of classical KRR baseline and meta-matching algorithms. P values were calculated based on a 
two-sided bootstrapping procedure (Methods). ‘*’ indicates P < 0.05 and statistical significance after multiple comparisons correction (FDR q < 0.05).  
‘**’ indicates P < 0.001 and statistical significance after multiple comparisons correction (FDR q < 0.05). ‘***’ indicates P < 0.00001 and statistical 
significance after multiple comparisons correction (FDR q < 0.05). ‘NS’ indicates no statistical significance (P ≥ 0.05) or did not survive FDR correction. 
Green color indicates that meta-matching methods were statistically better than classical KRR. The actual P values and statistical comparisons among all 
algorithms are found in Supplementary Fig. 4. Prediction performance measured using the COD is found in Supplementary Fig. 5.
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K participants (K-shot). Bootstrapping was used to derive P values 
(Fig. 7b, Supplementary Fig. 12 and Methods). Multiple comparisons 
were corrected using FDR (q < 0.05). The results were very similar 
to the previous experiment. Both meta-matching algorithms were 
significantly better than the classical (KRR) approach for 20-shot 
and above (Fig. 7b). The improvements were large. For example, 
in the case of 20-shot (a typical sample size for many fMRI stud-
ies), basic meta-matching (DNN) was more than 100% better than 
classical (KRR): 0.123 ± 0.028 (mean ± s.d.) versus 0.047 ± 0.016. 
Advanced meta-matching (stacking) was numerically (but not sta-
tistically) better than basic meta-matching (DNN).

In the case of explained variance measured by the COD 
(Supplementary Figs. 13 and 14), all algorithms performed poorly 
(COD ≤ 0) when there were ten participants (K = 10), suggesting 
worse than chance prediction. When there were at least 50 partici-
pants (K ≥ 50), basic meta-matching (DNN) became substantially 
better than the classical (KRR) approach. However, the improve-
ment was only statistically significant when there were at least 100 
participants (K ≥ 100). On the other hand, advanced meta-matching 
(stacking) was statistically better than classical (KRR) when there 
were at least 20 participants (K ≥ 20). Again, the improvements 
were substantial. For example, in the case of 100-shot, advanced 
meta-matching (stacking) was 800% better than classical (KRR): 
0.045 ± 0.005 (mean ± s.d.) versus 0.005 ± 0.006.

However, similarly to the UK Biobank, despite the substantial 
advantage of meta-matching over classical (KRR), not every phe-
notype benefited from meta-matching. For example, in the case of 
100-shot, the average performance (Pearson’s correlation) of classical 
(KRR) and advanced meta-matching (stacking) were 0.112 ± 0.011 
(mean ± s.d.) and 0.192 ± 0.008. This represented an average abso-
lute gain of 0.081 (minimum = −0.029, maximum = 0.189) across 

35 test phenotypes. In the case of the COD, there was an average 
absolute gain of 0.040 (minimum = −0.002, maximum = 0.160) 
across 35 test phenotypes.

Interpreting meta-matching with the Haufe transform. The 
primary goal of our study is to improve phenotypic prediction. 
However, a pertinent question is whether interpretation of the result-
ing meta-matching models might be biased by pre-trained predic-
tive models. Most previous studies have interpreted the regression 
weights or selected features of predictive models, which could be 
highly misleading53. Here, we consider the Haufe’s transform53 that 
yields a positive (or negative) predictive feature value for each RSFC 
edge. A positive (or negative) predictive feature value indicates that 
higher RSFC for the edge was associated with the predictive model 
predicting greater (or lower) value for the phenotype. We refer to the 
outputs of the Haufe transform as predictive network features (PNFs).

We will focus on the 100-shot scenario. First, for each HCP phe-
notype, we derived pseudo ground truth PNFs by training a KRR 
model on the full HCP dataset (N = 1,019) and then applied the 
Haufe transform to the KRR model. We then computed PNFs for 
various approaches to compare against the ground truth. In the case 
of classical (KRR), we trained the KRR model on 100 random HCP 
participants (that is, 100-shot) and then computed the PNFs. In the 
case of basic meta-matching (DNN) and advanced meta-matching 
(stacking), we translated the trained UK Biobank model on the 100 
HCP participants using meta-matching and then computed the 
PNFs. We also computed PNFs by applying the Haufe transform to 
the trained UK Biobank model using UK Biobank RSFC data and 
the best phenotype selected by basic meta-matching (DNN), which 
we will refer to as ‘basic meta-matching (DNN) training’. We then 
correlated the resulting PNFs with the ground truth PNFs. This 
procedure was repeated 100 times, and correlations with the ground 
truth were averaged across the 100 repetitions.

It is important to note that the pseudo ground truth was 
derived using KRR, which is, therefore, biased toward classical 
(KRR). Nevertheless, as shown in Fig. 8, we found that advanced 
meta-matching (stacking) was numerically closer to the ‘ground 
truth’ than the PNFs from classical (KRR), although the difference 
was not statistically significant. On the other hand, PNFs from 
advanced meta-matching (stacking) were statistically closer to the 

Alcohol 3 Digit-o C1 Breath C1 Time drive
–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

di
ct

io
n 

pe
rf

or
m

an
ce

 (
co

rr
el

at
io

n)

Classical (KRR)
Basic meta-matching (KRR)
Basic meta-matching (DNN)
Advanced meta-matching (fine-tune)
Advanced meta-matching (stacking)

Fig. 4 | Examples of phenotypic prediction performance in the test 
meta-set (N = 9,900) in the case of 100-shot learning. Here, prediction 
performance was measured using Pearson’s correlation. ‘Alcohol 3’ 
(average weekly beer plus cider intake) was most frequently matched to 
‘Bone C3’ (bone densitometry of heel principal component 3). ‘Digit-o 
C1’ (symbol digit substitution online principal component 1) was most 
frequently matched to ‘Matrix C1’ (matrix pattern completion principal 
component 1). ‘Breath C1’ (spirometry principal component 1) was most 
frequently matched to ‘Grip C1’ (hand grip strength principal component 
1). ‘Time drive’ (time spent driving per day) was most frequently matched 
to ‘BP eye C3’ (blood pressure and eye measures principal component 3). 
For each box plot, the horizontal line indicates the median, and the black 
triangle indicates the mean. The bottom and top edges of the box indicate 
the 25th and 75th percentiles, respectively. Whiskers correspond to 1.5 
times the interquartile range. Outliers are defined as data points beyond 
1.5 times the interquartile range. Supplementary Fig. 7 shows an equivalent 
figure using the COD as the prediction performance measure.
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Fig. 5 | Prediction improvements were driven by correlations between 
training and test meta-set phenotypes. Vertical axis shows the prediction 
improvement of advanced meta-matching (stacking) with respect 
to classical (KRR) baseline under the 100-shot scenario. Prediction 
performance was measured using Pearson’s correlation. Each dot represents 
a test meta-set phenotype. Horizontal axis shows each test phenotype’s 
top absolute Pearson’s correlation with phenotypes in the training meta-set. 
Test phenotypes with stronger correlations with at least one training 
phenotype led to greater prediction improvement with meta-matching. 
Similar conclusions were obtained with the COD (Supplementary Fig. 8).
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pseudo ground truth than basic meta-matching (DNN) and basic 
meta-matching (DNN) training.

Discussion
In this study, we proposed ‘meta-matching’, a simple framework to 
effectively translate predictive models from large-scale datasets to new 
phenotypes in small data. Using a large sample of almost 40,000 par-
ticipants from the UK Biobank, we demonstrated that meta-matching 
can substantially boost prediction performance in the small-sample 
scenario. We also demonstrated that the DNN trained on the UK 
Biobank can be translated well to the HCP dataset from a different 
scanner with different demographics and pre-processing. Overall, 
our results suggest that meta-matching will be extremely helpful for 
boosting the predictive power in small-scale boutique studies focus-
ing on specific neuroscience questions or clinical populations.

Interpretation of meta-matching. Given that meta-matching 
exploits correlations among phenotypes, the prediction mechanism 
might potentially be non-causal. However, we note that the primary 

goal of this study is to improve phenotypic prediction. There are 
many applications where prediction performance is inherently use-
ful1,54, even if the prediction is achieved via potentially non-causal 
routes. For example, antidepressants take at least 4 weeks to start 
working, and less than 50% of patients respond well to the first drug 
prescribed to them. Therefore, improving the ability to predict the 
best depression treatment is clinically useful even if the prediction 
mechanism is potentially ‘confounded’.

Furthermore, exploiting phenotypic correlations for predic-
tion does not imply that the prediction is necessarily confounded. 
Related behaviors (for example, negative affect, low mood and anxi-
ety) are often correlated because of common underlying neurobiol-
ogy. Exploiting such correlational structure to improve prediction is 
entirely appropriate. For example, translating a negative affect pre-
dictive model from a large-scale database to improve anxiety pre-
diction in patients with post-traumatic stress disorder should not be 
considered as confounding.

There are situations where phenotypic correlations should be 
considered confounds, but whether a variable is a confound or not 
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phenotypes in training meta-set (UK Biobank, N = 36,847)

Apply trained DNN to K participants (K-shot) from test meta-set (HCP) yielding 67
predictions per participant

For each of 35 non-brain-imaging
phenotypes in test meta-set, pick best
prediction (out of 67) that performs the
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For each of 35 non-brain-imaging
phenotypes, evaluate best DNN

prediction on remaining participants in
test meta-set (HCP, N = 1,019 – K) 
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For each of 35 non-brain-imaging
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regression to use min (K, 33) predictions 
for predicting K participants with five-fold

cross-validation
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phenotypes, evaluate tuned kernel ridge
regression on remaining participants in

test meta-set (HCP, N = 1,019 – K) 
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Fig. 6 | Experiment setup for meta-matching in the HCP. a, The training meta-set comprised 36,847 UK Biobank participants and 67 phenotypes. The 
test meta-set comprised 1,019 HCP participants and 36 phenotypes. The test meta-set was, in turn, split into K participants (K = 10, 20, 50, 100 and 200) 
and remaining 1,019 − K participants. This split was repeated 100 times for robustness. b, Application of basic and advanced meta-matching to the HCP 
dataset. Here, we considered basic meta-matching (DNN) and advanced meta-matching (stacking).
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is highly dependent on the goal of a study. For example, age is caus-
ally related to Alzheimer’s disease dementia. However, if a study 
is interested in dementia risks above and beyond aging, then age 
becomes a confound. Therefore, all observational studies (includ-
ing studies using meta-matching) should carefully consider what 
are confounds (or not) on a case-by-case basis. Overall, we think 
that handling confounds in meta-matching, although an important 
consideration, is no different from other observational studies.

To illustrate how confounding phenotypes might be handled in 
meta-matching, let us focus on advanced meta-matching (stacking). 
If a researcher thinks, a priori, that a particular training phenotype 
(for example, age) is a confound for the prediction of a test phenotype 
(for example, Alzheimer’s disease), then the researcher can regress the 
training phenotype (for example, age) from the variables in the train-
ing meta-set before training. The researcher can also regress the pre-
dicted training phenotype (for example, predicted age) from the other 
predicted variables in the K participants (in the test meta-set) before 
performing stacking. Alternatively, the stacking model can be inter-
preted (for example, using the Haufe transform) to infer the extent to 
which different training phenotypes (for example, age) contributed 
to the prediction of the test phenotype (for example, Alzheimer’s dis-
ease). The researcher can then reason whether the prediction mecha-
nism is confounded or not in the specific application.

Our results (Fig. 8) also suggest that meta-matching models are 
not less interpretable than classical approaches in terms of predic-
tive network features extracted by the Haufe transform. However, 
both classical (KRR) and advanced meta-matching (stacking) 
exhibited only moderate similarity with the pseudo ground truth 
(correlation ≈ 0.4), suggesting that interpreting predictive models 
built on small datasets remains an open research question not just 
in neuroscience but also in machine learning.

Finally, it is worth noting that the Haufe transform was devel-
oped to interpret linear predictive (discriminative) models, so it 
is directly applicable to KRR given our choice of a linear kernel. 
Application of the Haufe transform to advanced meta-matching 
(stacking) is equivalent to seeking a linear interpretation of the 
non-linear model53 (see Equation 8 of reference), which might, 
therefore, provide an incomplete interpretation.

Meta-matching model 1.0. The full UK Biobank DNN model 
(trained with 36,847 participants and 67 phenotypes) is made pub-
licly available as part of this study. We will refer to this model as 
‘meta-matching model 1.0’. To illustrate its use, let us consider a 
hypothetical new study with 100 participants.

The researcher should first validate the meta-matching approach 
on their data by adapting meta-matching model 1.0 on 80 random 
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Fig. 7 | Meta-matching reliably outperforms classical Krr in the HCP. a, Prediction performance (Pearson’s correlation) averaged across 35 phenotypes 
in the test meta-set (N = 1,019 − K). The K participants were used to train and tune the models (Fig. 6b). Box plots represent variability across 100 random 
repeats of K participants (Fig. 6a). For each box plot, the horizontal line indicates the median, and the black triangle indicates the mean. The bottom and 
top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range. Outliers are defined as 
data points beyond 1.5 times the interquartile range. b, Statistical difference between the prediction performance (Pearson’s correlation) of classical (KRR) 
baseline and meta-matching algorithms. P values were calculated based on a two-sided bootstrapping procedure (Methods). ‘*’ indicates P < 0.05 and 
statistical significance after multiple comparisons correction (FDR q < 0.05). ‘**’ indicates P < 0.001 and statistical significance after multiple comparisons 
correction (FDR q < 0.05). ‘***’ indicates P < 0.00001 and statistical significance after multiple comparisons correction (FDR q < 0.05). ‘NS’ indicates 
no statistical significance (P ≥ 0.05) or did not survive FDR correction. The actual P values and statistical comparisons among all algorithms are found 
in Supplementary Fig. 12. Prediction performance measured using the COD is found in Supplementary Fig. 13. Green color indicates that meta-matching 
methods were statistically better than classical (KRR).
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participants (using meta-matching stacking) and testing on the 
remaining 20 participants. This procedure can be repeated multiple 
times, and an average performance can be computed. Assuming that 
the resulting prediction performance is satisfactory, the researcher 
can then move on to the next step, which is dependent on the goal 
of the researcher.

If the goal is to obtain prediction for the 100 participants, for 
each participant the researcher can first translate the meta-matching 
model to the other 99 participants (that is, 99-shot) and then use the 
model to predict the phenotype of the left-out participant. On the 
other hand, if the goal is to predict new participants beyond the 100 
participants, the researcher can adapt the meta-matching model to 
all 100 participants (that is, 100-shot). This final adapted model can 
then be applied to new participants beyond the 100 participants. 
Furthermore, the researcher can also interpret the final adapted 
model for new insights into the brain—for example, by using the 
Haufe transform53.

Absolute versus relative prediction performance. We note that 
a variety of prediction performance measures have been used 
in the literature. For studies interested in relative ranking41,49, 
Pearson’s correlation is a common performance metric. We showed 
that if Pearson’s correlation was used as a performance metric, 
meta-matching performed very well even with as few as ten par-
ticipants (Fig. 3). Thus, if the experimenter’s goal is relative rank-
ing, then our experiments suggest that meta-matching is superior 
regardless of sample sizes.

However, others have strongly argued in favor of absolute predic-
tion performance7. In this scenario, the COD is a common perfor-
mance metric that measures variance explained by the predictive 
algorithm. In the case of the UK Biobank, advanced meta-matching 
substantially outperformed classical (KRR) in terms of the COD, 
when there were at least 50 participants (Supplementary Fig. 5).  

In the case of the HCP dataset, advanced meta-matching substan-
tially outperformed classical (KRR) in terms of the COD, when 
there were at least 20 participants (Supplementary Fig. 14). Thus, 
our experiments suggest that absolute prediction is unlikely to be 
successful with fewer than 20 participants and should not be con-
sidered a realistic goal.

Limitations and future work. Although the core idea behind 
meta-matching is to exploit correlations among phenotypes, we note 
that the resulting algorithms leverage on several closely related ideas 
in machine learning, including meta-learning, multi-task learning 
and transfer learning17. For example, the use of a single neural net-
work to predict all phenotypes simultaneously is known as multi-task 
learning55. The fine-tuning component of advanced meta-matching 
(fine-tune) can be thought of as a simple version of network-based 
transfer learning50. Similarly, advanced meta-matching (stacking) 
seeks to exploit the benefits of ‘averaging’ predictions51,52 on top of the 
core idea of meta-matching. However, it is worth noting that the larg-
est gain in performance (for example, K = 100-shot in Figs. 3 and 7) 
comes from the core idea of meta-matching. The additional machine 
learning techniques (for example, fine-tuning and stacking) do fur-
ther boost performance but at a smaller magnitude. Nevertheless, it 
is possible that more advanced machine learning approaches can fur-
ther boost performance. This is a promising avenue for future work.

Because meta-matching exploits correlations between training 
and test meta-sets, the amount of prediction improvement strongly 
relied on the strongest correlations between the test phenotype and 
training phenotypes (Fig. 5). Consequently, not all phenotypes ben-
efited from meta-matching. For example, in the case of 100-shot 
in the HCP dataset, the prediction performance of advanced 
meta-matching (stacking) was numerically worse for four of the 35 
phenotypes (in the case of Pearson’s correlation) and two of the 35 
phenotypes (in the case of COD). However, it is important to note 
that this limitation exists for all meta-learning and transfer learning 
algorithms. Model transfer is easier if the source and target domains 
are more similar; performance will degrade if the source and target 
domains are very different.

Although initial large-scale projects target young healthy adults, 
a growing number of large-scale population-level datasets are tar-
geting different populations, including elderly, children, lifespan 
and different disorders. These newer datasets will likely include 
rarer phenotypes specific to the target populations. This suggests 
that phenotypic diversity will continue to grow, which would 
increase the probability of some phenotypes in some large-scale 
datasets being correlated with a new phenotype of interest in a 
smaller dataset. An example of future work would be to develop a 
meta-matching model based on the ABCD dataset, which includes 
mental health symptoms, such as the Child Behavioral Checklist.

We also note that the UK Biobank does have a large number 
of mental health measures. However, many of these measures are 
binary yes/no questions, which might not be sufficiently ‘rich’ for 
imaging-based prediction. Consequently, these measures were fil-
tered out in our current study. Recent studies have begun to syn-
thesize more meaningful mental health summary measures that 
are better correlated with brain imaging features56. As future work, 
we hope to build on such efforts, which would allow us to either 
include these mental health summary measures into an omnibus 
meta-matching model (that predict a wider variety of phenotypes) 
or build a meta-matching model specialized for mental health. 
Nevertheless, it is likely the case that some rare phenotypes will not 
be able to benefit from meta-matching.
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Fig. 8 | Agreement (correlation) of PNFs with pseudo ground truth in the 
HCP dataset. For both meta-matching (stacking) and classical (KRR), the 
Haufe transform53 was used to estimate PNFs in the 100-shot scenario 
(N = 100). Pseudo ground truth PNFs were generated by applying the Haufe 
transform to a KRR model trained from the full HCP dataset (N = 1,019). 
PNFs were also estimated for basic meta-matching (DNN) training based 
on the UK Biobank (N = 29,477). We found that the PNFs derived from 
meta-matching (stacking) and classical (KRR) achieved similar agreement 
with pseudo ground truth. For each box plot, the horizontal line indicates 
the median, and the black triangle indicates the mean. The bottom and 
top edges of the box indicate the 25th and 75th percentiles, respectively. 
Whiskers correspond to 1.5 times the interquartile range. Outliers are 
defined as data points beyond 1.5 times the interquartile range.
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Methods
Datasets. This study used data from two datasets: the UK Biobank25,46 and the 
HCP47. Our analyses were approved by the National University of Singapore 
Institutional Review Board.

The UK Biobank (under UK Biobank resource application 25163) is a 
population epidemiology study with 500,000 adults (age 40–69 years) recruited 
between 2006 and 2010 (ref. 46). A subset of 100,000 participants is being recruited 
for multimodal imaging, including brain MRI—for example, structural MRI 
and resting-state fMRI (rs-fMRI) from 2016 to 2022 (refs. 25,46,57,58). A wide range 
of non-brain-imaging phenotypes was acquired for each participant. Here, we 
considered the January 2020 release of 37,848 participants with structural MRI 
and rs-fMRI. Structural MRI (1.0 mm isotropic) and rs-fMRI (2.4 mm isotropic) 
were acquired at four imaging centers (Bristol, Cheadle Manchester, Newcastle and 
Reading) with harmonized Siemens 3T Skyra MRI scanners. Each participant has 
one rs-fMRI run with 490 frames (6 minutes) and a repetition time (TR) of 0.735 s.

The HCP S1200 release comprised 1,094 young healthy adults (age 22–35 
years) with pre-processed rs-fMRI data59–61. A wide variety of non-brain-imaging 
phenotypes was acquired for each participant. For each participant, structural MRI 
(0.7 mm isotropic) and rs-fMRI (2 mm isotropic) were acquired at Washington 
University in St. Louis with a customized Siemens 3T Connectome Skyra MRI 
scanner. Each participant has two rs-fMRI sessions. Each session has two rs-fMRI 
runs with 1,200 frames (14.4 minutes) each and a TR of 0.72 s.

Brain imaging data. In the case of the UK Biobank analyses (Figs. 1–5), we used 
55 × 55 RSFC (partial correlation62) matrices from data field 25753 of the UK 
Biobank25,58. Data field 25753 RSFC had 100 whole-brain spatial independent 
component analysis (ICA)-derived components63. After the removal of 45 
artifactual components, as indicated by the UK Biobank team, 55 components were 
left25. Data field 25753 contains two instances: first imaging visit (instance 2) and 
first repeat imaging visit (instance 3). The first imaging visit (instance 2) had RSFC 
data for 37,848 participants, whereas the first repeat imaging visit (instance 3) had 
RSFC data for only 1,493 participants. Here, we only considered RSFC from the 
first imaging visit (instance 2).

In the case of the analyses exploring model translation from the UK Biobank 
to the HCP (Figs. 6–8), 55 × 55 RSFC matrices were not available in the HCP. 
Therefore, we considered 419 × 419 RSFC (Pearson’s correlation) matrices for both 
UK Biobank and HCP, consistent with previous studies from our group11,35,44. The 
419 × 419 RSFC matrices were computed using 400 cortical64 and 19 subcortical65 
parcels. In the case of the UK Biobank, ICA-FIX pre-processed volumetric rs-fMRI 
time series data58 were projected to MNI152 2-mm template space. The time 
series were averaged within each cortical and each subcortical parcel. Pearson’s 
correlations were computed to generate the 419 × 419 RSFC matrices. In the case 
of the HCP, we used ICA-FIX MSMALL time series in the grayordinate (combined 
surface and subcortical volumetric) space66. The time series were averaged within 
each cortical and each subcortical parcel. Pearson’s correlations were computed to 
generate the 419 × 419 RSFC matrices.

RSFC-based prediction setup. Our meta-matching framework is highly flexible 
and can be instantiated with different machine learning algorithms. Here, we 
considered KRR and fully connected feed-forward DNN, which we previously 
demonstrated to work well for RSFC-based behavioral and demographics 
prediction11. As discussed in the previous section, each RSFC matrix was a 
symmetric N × N matrix, where N is the number of independent components 
or parcels. Here, N = 55 (Figs. 1–5) or 419 (Figs. 6–8). Each element represented 
the degree of statistical dependencies between two brain components. The lower 
triangular elements of the RSFC matrix of each participant were then vectorized 
and used as input features for KRR and DNN to predict individuals’ phenotypes.

KRR67 is a non-parametric machine learning algorithm. This method is 
a natural choice as we previously demonstrated that KRR achieved similar 
prediction performance as several DNNs for the goal of RSFC-based behavioral 
and demographics prediction11. Roughly speaking, KRR predicts the phenotype 
(for example, fluid intelligence) of a test participant by the weighted average of all 
training participants’ phenotypes (for example, fluid intelligence). The weights 
in the weighted average are determined by the similarity (that is, kernel) between 
the test participant and training participants. In this study, similarity between two 
participants was defined as the Pearson’s correlation between the vectorized lower 
triangular elements of their RSFC matrices. KRR also contains an l2 regularization 
term as part of the loss function to reduce overfitting. The hyperparameter λ is 
used to control the strength of the l2 regularization11,67.

A fully connected feed-forward DNN is one of the most classical DNNs68. 
We previously demonstrated that the feed-forward DNN and KRR could achieve 
similar performance for RSFC-based behavioral and demographics prediction11. 
In this study, the DNN was trained based on the vectorized lower triangular 
elements of the RSFC matrix as input features and output the prediction of one 
or more non-brain-imaging phenotypes. The DNN consists of several fully 
connected layers. Each node (except input layer nodes) is connected to all nodes 
in the previous layer. The value at each node is the weighted sum of node values 
from the previous layer. For example, the value of each node in the first hidden 
layer is the weighted sum of all input FC values. The outputs of the hidden layer 

nodes go through a non-linear activation function, rectified linear units (ReLU; 
f(x) = max(0, x)). The output layer is linear. More details about hyperparameter 

tuning (for example, number of layers and number of nodes per layer) are found 
in Supplementary Methods 1. We note that traditional deep convolutional neural 
networks are invalid for RSFC matrices, so they are not used.

Non-brain-imaging phenotype selection in the UK Biobank. In the case of the UK 
Biobank, to obtain the final set of 67 non-brain-imaging phenotypes we began by 
extracting all 3,937 unique phenotypes available to us under UK Biobank resource 
application 25163. We then performed three stages of selection and processing:

 1. In the first stage, we
•	 Removed non-continuous and non-integer data fields (date and time 

converted to float), except for sex.
•	 Removed brain MRI phenotypes (category ID 100).
•	 Removed first repeat imaging visit (instance 3).
•	 Removed first two instances (instances 0 and 1) if first imaging visit 

(instance 2) exists and first imaging visit (instance 2) participants were 
more than double of participants from instances 0 or 1.

•	 Removed first instance (instance 0) if only the first two instances 
(instances 0 and 1) exist and instance 1 participants were more than 
double of participants from instance 0.

•	 Removed phenotypes for which fewer than 2,000 participants had RSFC 
data.

•	 Removed behaviors with the same value for more than 80% of 
participants.

•	  
After the first stage of filtering, we were left with 701 phenotypes.

 2. We should not expect every phenotype to be predictable by RSFC. Therefore, 
in the second stage, our goal was to remove phenotypes that could not be well 
predicted even with a large number of participants. More specifically,
•	 We randomly selected 1,000 participants from 37,848 participants. These 

1,000 participants were completely excluded from the main experiments 
(Fig. 1a).

•	 Using these 1,000 participants, KRR was used to predict each of the 701 
phenotypes using RSFC. To ensure robustness, we performed 100 random 
repeats of training, validation and testing (60%, 20% and 20%). For each 
repeat, KRR was trained on the training set, and hyperparameters were 
tuned on the validation set. We then evaluated the trained KRR on the 
test set. Phenotypes with an average test prediction performance (Pear-
son’s correlation) less than 0.1 were removed.

•	  
At the end of this second stage, 265 phenotypes were left. The list of 
selected and removed UK Biobank phenotypes can be found in Supple-
mentary Methods 2.

 3. Many of the remaining phenotypes were highly correlated. For example, 
the bone density measurements of different body parts were highly cor-
related. PCA was performed separately on each subgroup of highly similar 
phenotypes in the 1,000-participant sample. Similarity was evaluated based 
on the UK Biobank-provided categories of item sets (that is, items under the 
same category were considered highly similar). PCAs were not applied to 18 
phenotypes (out of 265 phenotypes), which were not similar to other pheno-
types. For the purpose of carrying out PCA, missing values were filled in with 
the expectation–maximization algorithm69. For each PCA, we kept enough 
components to explain 95% of the variance in the data or six components, 
whichever is lower. Overall, the PCA step reduced the 247 phenotypes (out 
of 265 phenotypes) to 93 phenotypes. We then repeated the previous step 
(stage 2) on these 93 phenotypes, resulting in 49 phenotypes with prediction 
performance (Pearson’s correlation) larger than 0.1. Adding back the 18 phe-
notypes that were not processed by PCA, we ended up with 67 phenotypes 
used in this manuscript. For the UK Biobank analyses (Figs. 1–5), this PCA 
procedure was also applied separately to the training and test meta-sets. For 
model translation from UK Biobank to HCP (Figs. 6–8), the PCA procedure 
was applied to all 36,848 participants.

The final list of the phenotypes for UK Biobank is found in Supplementary 
Tables 1 and 2.

Non-brain-imaging phenotype selection in the HCP. In the case of HCP, 
we considered 58 non-brain-imaging phenotypes across cognition, emotion 
and personality, consistent with our previous studies11,44,70. Of the 1,094 HCP 
participants, 1,019 participants had all 58 non-brain-imaging phenotypes. We 
performed KRR and ten-fold inner-loop nested cross-validation to predict each 
phenotype separately using RSFC. To ensure robustness, we performed 100 
random repetitions of the ten-fold nested cross-validation procedure. Phenotypes 
with an average prediction performance (Pearson’s correlation, averaged across 
ten folds and 100 random repetitions) greater than 0.1 were retained, yielding 35 
phenotypes. The final list of 35 phenotypes is found in Supplementary Table 3.  
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Given that KRR was applied to the entire HCP dataset to select phenotypes, 
we note that this procedure is biased in favor of the KRR baseline. Therefore, 
the superior prediction performance of meta-matching (Fig. 7) was even more 
noteworthy.

Data split scheme in the UK Biobank analyses. For the UK Biobank analyses 
(Figs. 1–5), we considered 36,848 participants with 55 × 55 RSFC matrices and 67 
phenotypes. As illustrated in Fig. 1a, we randomly split the data into two meta-sets: 
training meta-set with 26,848 participants and 33 phenotypes and test meta-set 
with 10,000 participants and 34 phenotypes. There was no overlap between 
the participants and phenotypes across the two meta-sets. Figure 1b shows the 
Pearson’s correlations between the training and test phenotypes. Figures S2 and S3 
show correlation plots for phenotypes within training and test meta-sets.

For the training meta-set, we further randomly split it into a training set with 
21,478 participants (80% of 26,848 participants) and a validation set with 5,370 
participants (20% of 26,848 participants). For the test meta-set, we randomly split 
10,000 participants into K participants (K-shot) and 10,000 − K participants, where 
K had a value of 10, 20, 50, 100 and 200. The group of K participants mimicked 
traditional small-N studies. Each random K-shot split was repeated 100 times to 
ensure stability.

Z-normalization (transforming each variable to have zero mean and unit 
variance) was applied to the phenotypes. In the case of the training meta-set, 
Z-normalization was performed by using the mean and standard deviation 
computed from the training set within the training meta-set. In the case of the test 
meta-set, for each of the 100 repeats of the K-shot learning, the mean and standard 
deviation were computed from the K participants and subsequently applied to the 
full test meta-set.

Data split scheme in the HCP analyses. To translate predictive models from 
the UK Biobank to the HCP, the test meta-set comprised 1,019 HCP participants 
with 419 × 419 RSFC matrices and 35 phenotypes (Fig. 6a). The training meta-set 
comprised 36,847 participants with 419 × 419 RSFC matrices and 67 phenotypes 
from the UK Biobank. We further split the training meta-set into a training set 
with 29,477 participants (80% of 36,847 participants) and a validation set with 
7,380 participants (20% of 36,847 participants). For the test meta-set, we randomly 
split 1,019 participants into K participants (K-shot) and 1,019 − K participants, 
where K had a value of 10, 20, 50, 100 and 200. The group of K participants 
mimicked traditional small-N studies. Each random K-shot split was repeated 100 
times to ensure stability. Similarly to the UK Biobank analyses, Z-normalization 
was applied to the phenotypes.

Classical (KRR) baseline. For the classical (KRR) baseline, we performed K-shot 
learning for each non-brain-imaging phenotype in the test meta-set, using K 
participants from the random split (Figs. 1a and 6a). More specifically, for each 
phenotype, we performed five-fold cross-validation on the K participants using 
different values of the hyperparameter λ (that controlled the strength of the l2 
regularization). To choose the best hyperparameter, prediction performance was 
evaluated using the COD. The best hyperparameter λ was used to train the KRR 
model using all K participants. The trained KRR model was then applied to the 
remaining test participants—that is, N = 10,000 − K in the case of Figs. 1–5 and 
N = 1,019 − K in the case of Figs. 6–8. Prediction performance in the 10,000 − K (or 
1,019 − K) test participants was measured using Pearson’s correlation and the COD. 
This procedure was repeated for each of the 100 random subsets of K participants.

Note that when applied to the 10,000 − K (or 1,019 − K) participants, the 
COD was defined as 1 −

∑
i (yi−ŷi)

2
∑

i (yi−ȳ)2 , where yi was the true target variable of the 
i-th participant (among the 10,000 − K participants); ŷi was the predicted target 
variable of the i-th participant; and ȳ was the mean target variable in the training 
set (K participants). The best possible value for the COD was 1. It was possible for 
the COD to be less than 0, in which case we were better off not using any imaging 
data for prediction. Instead, we could simply predict using the mean target variable 
in the training set, which would yield a COD of 0.

Basic meta-matching. The meta-matching framework is highly flexible and can 
be instantiated with different machine learning algorithms. Here, we incorporated 
KRR and fully connected feed-forward DNN within the meta-matching 
framework. We proposed two classes of meta-matching algorithms: basic and 
advanced. In the case of basic meta-matching, we considered two variants: ‘basic 
meta-matching (KRR)’ and ‘basic meta-matching (DNN)’ (Figs. 2 and 6b).

To ease our explanation of basic meta-matching, we will focus on the 
experimental setup for the UK Biobank analysis (Figs. 1–5). In the case of 
basic meta-matching (KRR), we first trained a KRR to predict each training 
non-brain-imaging phenotype from RSFC. We used the training set (N = 21,478) 
within the training meta-set for training and validation set (N = 5,370) within the 
training meta-set for hyperparameter tuning. The hyperparameter λ was selected 
via a simple grid search. There were 33 phenotypes, so we ended up with 33 trained 
KRR models from the training meta-set. Second, we applied the 33 trained KRR 
models to K participants (K-shot) from the test meta-set, yielding 33 predictions 
per participant. Third, for each test phenotype (out of 34 phenotypes), we picked 
the best KRR model (out of 33 models) that performed the best (as measured by 

the COD) on the K participants. Finally, for each test phenotype, we applied the 
best KRR model to the remaining participants in the test meta-set (N = 10,000 − K). 
Prediction performance in the 10,000 − K participants was measured using 
Pearson’s correlation and the COD. To ensure robustness, the K-shot procedure 
was repeated 100 times, each with a different set of K participants.

In the case of basic meta-matching (DNN), we first trained one single DNN to 
predict all 33 training phenotypes from RSFC. In other words, the DNN outputs 
33 predictions simultaneously. The motivation for a single multi-output DNN is 
to avoid the need to train and tune 33 single-output DNNs. We used the training 
set (N = 21,478) within the training meta-set for training and validation set 
(N = 5,370) within the training meta-set for hyperparameter tuning. Details of the 
hyperparameter tuning is found in Supplementary Methods 1. Second, we applied 
the trained DNN to the K participants (K-shot) from the test meta-set, yielding 
33 different phenotypical predictions for each given participant. Third, for each 
test phenotype (out of 34 phenotypes), we picked the best output DNN node (out 
of 33 output nodes) that generated the best prediction (as measured by the COD) 
for the K participants. Finally, for each test phenotype, we applied the predictions 
from the best DNN output node on the remaining 10,000 − K participants in the 
test meta-set. Prediction performance in the 10,000 − K participants was measured 
using Pearson’s correlation and the COD. To ensure robustness, the K-shot 
procedure was repeated 100 times, each with a different set of K participants.

Advanced meta-matching. There might be significant differences between the 
training and test meta-sets. Therefore, the best phenotypic prediction model 
estimated from the training meta-set might not generalize well to the test meta-set. 
Thus, we proposed two additional meta-matching approaches: ‘advanced 
meta-matching (fine-tune)’ and ‘advanced meta-matching (stacking)’ (Figs. 2 and 6b).

To ease our explanation of advanced meta-matching, we will focus on the 
experimental setup for the UK Biobank analysis (Figs. 1–5). In the case of 
advanced meta-matching (fine-tune), we used the same multi-output DNN from 
basic meta-matching (DNN). Like before, for each test phenotype (out of 34 
phenotypes), we picked the best output DNN node (out of 33 output nodes) that 
generated the best prediction (as measured by the COD) for the K participants. 
We retained this best output node (while removing the remaining 32 nodes) and 
fine-tuned the DNN using the K participants (K-shot). More specifically, the K 
participants were randomly divided into training and validation sets using a 4:1 
ratio. The training set was used to fine-tune the weights of the last two layers of 
the DNN, whereas the remaining weights were frozen. The validation set was used 
to determine the stopping criterion (in terms of the number of training epochs). 
The fine-tuned DNN was applied to the remaining 10,000 − K participants in the 
test meta-set. We note that the fine-tuning procedure was repeated separately for 
each of 33 test phenotypes. Prediction performance in the 10,000 − K participants 
was measured using Pearson’s correlation and the COD. To ensure robustness, 
the K-shot procedure was repeated 100 times, each with a different set of K 
participants. More details about the fine-tuning procedure can be found in 
Supplementary Methods 3.

In the case of advanced meta-matching (stacking), we used the same 
multi-output DNN from basic meta-matching (DNN). The DNN was applied to 
the K participants (K-shot) from the test meta-set, yielding 33 predictions per 
participant. For each test phenotype (out of 34 phenotypes), the best M predictions 
(as measured by the COD) were selected. To reduce overfitting, M was set to be 
the minimum of K and 33. Thus, if K was smaller than 33, we considered the top 
K outputs from the multi-output DNN. If K was larger than 33, we considered 
all 33 outputs of the multi-output DNN. We then trained a KRR model using the 
M DNN outputs to predict the phenotype of interest in the K participants. The 
hyperparameter λ was tuned using grid search and five-fold cross-validation on 
the K participants. The optimal λ was then used to train a final KRR model using 
all K participants. Finally, the KRR model was applied to the remaining 10,000 − K 
participants in the test meta-set. We note that this ‘stacking’ procedure was 
repeated separately for each of 34 test phenotypes. Prediction performance in the 
10,000 − K participants was measured using Pearson’s correlation and the COD. 
To ensure robustness, the K-shot procedure was repeated 100 times, each with a 
different set of K participants.

DNN implementation. The DNN was implemented using PyTorch71 and 
computed on Nvidia Titan Xp GPUs using CUDA. More details about 
hyperparameter tuning are found in Supplementary Methods 1. More details about 
DNN fine-tuning are found in Supplementary Methods 3.

Statistical tests. To evaluate whether differences between algorithms were 
statistically significant, we adapted a bootstrapping approach developed for 
cross-validation procedures72 (see page 85 of reference). To ease our explanation of 
the bootstrapping procedure, we will focus on the experimental setup for the UK 
Biobank analysis (Figs. 1–5).

More specifically, we performed bootstrap sampling 1,000 times. For each 
bootstrap sample, we randomly picked K participants with replacement, and the 
remaining 10,000 − K participants were used as test participants. Thus, the main 
difference between our main experiments (100 repeats of K-shot learning in Fig. 
2a) and the bootstrapping procedure is that the bootstrapping procedure sampled 
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participants with replacement, so the K bootstrapped participants might not be 
unique. For each of the 1,000 bootstrapped samples, we applied classical (KRR) 
baseline, basic meta-matching (KRR), basic meta-matching (DNN) and advanced 
meta-matching (stacking), thus yielding 1,000 bootstrapped samples of the COD 
and Pearson’s correlation (computed from the remaining 10,000 − K participants). 
Bootstrapping was not performed for advanced meta-matching (fine-tune) 
because 1,000 bootstrap samples would have required 60 days of compute time (on 
a single GPU).

Statistical significance for the COD and Pearson’s correlation were calculated 
separately. For ease of explanation, let us focus on the COD. The procedure for 
Pearson’s correlation was exactly the same, except that we replaced the COD with 
Pearson’s correlation in the computation. To compute the statistical difference 
between advanced meta-matching (finetune) and another algorithm X, we first 
fitted a Gaussian distribution to the 1,000 bootstrapped samples of the COD 
from algorithm X, yielding a cumulative distribution function (CDFX). Suppose 
the average COD of advanced meta-matching (fine-tune) across the 100 random 
repeats of K-shot learning was µ. Then, the P value was given by 2 × CDF(µ) if µ is 
less than the mean of the bootstrap distribution or 2 × (1 − CDF(µ)) if µ is larger 
than the mean of bootstrap distribution.

When computing the statistical difference between two algorithms X and Y 
with 1,000 bootstrapped samples each, we first fitted a Gaussian distribution to the 
1,000 bootstrapped samples of the COD from algorithm X, yielding a cumulative 
distribution function (CDFX). This was repeated for algorithm Y, yielding a 
cumulative distribution function (CDFY). Let the average COD of algorithm X (and 
Y) across the 100 random repeats of K-shot learning be µX (and µY). We can then 
compute a P value by comparing µX with CDFY and a P value by comparing µY with 
CDFX. The larger of the two P values was reported.

P values were computed between all pairs of algorithms. Multiple comparisons 
were corrected using the FDR (q < 0.05). FDR was applied to all K-shots and across 
all pairs of algorithms.

Haufe transform. We used the Haufe transform to evaluate the interpretability 
of meta-matching in the 100-shot scenario. For a predictive model with RSFC 
as input and phenotype as output, the Haufe transform computes a positive (or 
negative) value for each RSFC edge. A positive (or negative) value indicates that 
higher RSFC value was associated with predicting greater (or lower) phenotypic 
value. We refer to the outputs of the Haufe transform as predictive network 
features (PNFs).

First, for each HCP phenotype (out of 35 phenotypes), we derived pseudo 
ground truth PNFs using the full HCP dataset (N = 1,019). More specifically, we 
performed five-fold cross-validation to find the best hyperparameter for KRR. 
We then trained a KRR model with the best hyperparameter using all 1,019 HCP 
participants. The trained KRR model was applied to the 1,019 participants to 
predict the phenotype. The Haufe transform was defined as the covariance between 
the phenotypic prediction and each RSFC edge (across the 1,019 participants). 
Therefore, a separate covariance value was produced for each phenotype and each 
RSFC edge. The final PNF matrix was of size 87,571 × 35, with 87,571 being the 
number of unique elements in the 419 × 419 FC matrix (that is 419 × 418 / 2) and 
35 being the number of HCP phenotypes.

Second, we computed PNFs for various approaches (in the 100-shot scenario) 
to compare against the ground truth. In the case of ‘classical (KRR)’, for each 
HCP phenotype, we trained a KRR model on 100 random HCP participants with 
the best hyperparameter (obtained from five-fold cross-validation on the same 
100 participants). The trained KRR model was applied to predict the phenotype 
on the same 100 participants. Again, the Haufe transform was defined as the 
covariance between the phenotypic prediction and each RSFC edge (across 
the 100 participants). This procedure was repeated 100 times with different 
random samples of 100 participants. The PNFs were then averaged across the 
100 repetitions. The final PNF matrix was of size 87,571 × 35. The procedure 
was repeated for ‘basic meta-matching (DNN)’ and ‘advanced meta-matching 
(stacking)’, yielding a PNF matrix (of size 87,571 × 35) for each approach.

Finally, in the case of ‘basic meta-matching (DNN) training’, recall that we 
have previously trained a DNN to predict 67 phenotypes in the UK Biobank 
training set (N = 29,477; Fig. 6a). We applied the trained DNN to predict the 67 
phenotypes in the UK Biobank training set. For each phenotype, we computed 
the covariance between the phenotypic prediction and each RSFC edge (across 
the 29,477 participants). This produced a PNF matrix of size 87,571 × 67 from 
the UK Biobank. For each HCP phenotype (out of 35 phenotypes), we found the 
most frequently matched UK Biobank phenotype based on 100 repetitions of 
basic meta-matching (DNN) from the previous paragraph. The PNFs of the HCP 
phenotype were set to be equal to the PNFs of this most frequently matched UK 
Biobank phenotype. Therefore, this procedure also yielded a PNF matrix of size 
87,571 × 35.

Computational costs of meta-matching. Meta-matching comprises two stages: 
training on the training meta-set and meta-matching on new non-brain-imaging 
phenotypes in the K participants (K-shot). Training and hyperparameter tuning 
on the training meta-set is slow but has to be performed only once. For example, 
in our study, training the DNN with automatic hyperparameter tuning using 

the HORD algorithm73–75 on a single GPU took about 2 days. In the case of both 
basic meta-matching algorithms, meta-matching on new non-brain-imaging 
phenotypes is extremely fast because it only requires forward passes through a 
neural network (in the case of DNN) or matrix multiplications (in the case of 
KRR). More specifically, the second stage for basic meta-matching algorithms took 
less than 0.1 seconds for a single test meta-set phenotype and one K-shot. In the 
case of advanced meta-matching (stacking), there is an additional step of training 
a KRR model on the K participants. Nevertheless, the second stage for advanced 
meta-matching (stacking) took only 0.5 seconds for a single meta-set phenotype 
and one K-shot. On the other hand, the computational cost for fine-tuning the 
DNN for advanced meta-matching (fine-tune) is a lot more substantial, requiring 
about ~30 seconds for a single test meta-set phenotype and one K-shot. Although 
30 seconds might seem quite fast, repeating the K-shot 100 times for all values of K 
and 34 meta-set phenotypes required six full days of computational time.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This study used publicly available data from the UK Biobank (https://www.
ukbiobank.ac.uk/) and the HCP (https://www.humanconnectome.org/). Data can 
be accessed via data use agreements.

Code availability
Code for the classical (KRR) baseline and meta-matching algorithms can be found 
here: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
predict_phenotypes/He2022_MM. The trained models for meta-matching 
(that is, meta-matching model 1.0) are also publicly available (https://github.
com/ThomasYeoLab/Meta_matching_models). The code was reviewed by two 
co-authors (L.A. and P.C.) before merging into the GitHub repository to reduce the 
chance of coding errors.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software used for data collection.

Data analysis We utilized widely used python libraries and customized python code for this study. The python libraries includes: python (version 3.6.13), 

CUDA (version 8.0), PyTorch (version 0.4.0). The code utilized have be made publicly available on Github at link: https://github.com/

ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/He2022_MM. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

This study utilized publicly available data from the UK Biobank (https://www.ukbiobank.ac.uk/) and the Human Connectome Project (HCP) datasets (https://

www.humanconnectome.org/)
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 37,848 participants from UK Biobink dataset and 1019 participants from HCP S1200 release. We did not perform any statistical method to 

predetermine the sample size, and the number of sample is simply determined by counting number of participants we have for each dataset 

after the data exclusions steps stated below.

Data exclusions For UK Biobank, we include all participants with data-field 25753 (resting-state fMRI partial correlation matrices) of the UK Biobank. For HCP 

datasets, we include all participants with rsfMRI data and 58 phenotypes we used for experiments, which results in 1019 participants.

Replication The main results have been replicated in two experiment setups. For first experiment, models were trained and tested on UK Biobank dataset 

with careful participants and phenotypes split. For second experiment, models were trained on UK Biobank dataset and were tested on HCP 

dataset with complete different set of participants and phenotypes.

Randomization For first experiment we randomly divide subjects into training meta-set (N=26848, 33 phenotypes) and test meta-set (N=10000, 34 

phenotypes). Training meta-set is further randomly divide to training set (N=21478) and validation set (N=5370). Test meta-set is further 

randomly divide to K-shot (K=10, 20, 50, 100, 200) and remaining test set (N = 10000 - K) multiple times with different random number 

generator. For second experiment we randomly divide 1019 HCP subjects into K-shot (K=10, 20, 50, 100, 200) and remaining test set (N = 

1019 - K) multiple times with different random number generator.

Blinding Blinding is not relevant to this study as no data collection was involved. The persons performing analyses were unaware of the sample 

identity.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics This study utilized data from the UK Biobank under UK Biobank resource application 25163 and WU-Minn HCP Consortium 

S1200 Release. The UK Biobank is a population epidemiology study with ~500,000 adults (age 40-69) recruited between 2006 

and 2010, previously described in detail by Bycroft et al, Nature 2018 (https:// www.nature.com/articles/s41586-018-0579-

z). Briefly, 94.7% of sequenced participants are of European ancestry, 54.2% are female, the average age at assessment is 58, 

and the mean BMI is 26. 45% of participants report a history of smoking, and each participant reports 8 inpatient ICD10 3D 

codes, on average. HCP S1200 release comprised 1206 healthy young adults (age 22-35, 657 female).

Recruitment The UK Biobank has 500,000 adults (age 40-69) recruited between 2006 and 2010. A subset of 100,000 participants is being 

recruited for multimodal imaging, including brain MRI, e.g., structural MRI and resting-state fMRI (rs-fMRI) from 2016 to 

2022. For HCP S1200 release, 1206 healthy young adult (age 22-35) participants were recruited from families with twins and 

non-twin siblings in Human Connectome Project (HCP). Authors are not involved in the recruitment of either datasets. More 

information can be found at https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/recruitment and 

https://www.ukbiobank.ac.uk/media/gnkeyh2q/study-rationale.pdf
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Ethics oversight Although the data was not collected by us, our study is approved by the National University of Singapore Institutional Review 

Board (IRB).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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