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ABSTRACT
BACKGROUND: The field of psychiatry has long sought biomarkers that can objectively diagnose patients, predict
treatment response, or identify individuals at risk of illness onset. However, reliable psychiatric biomarkers have yet to
emerge. The recent application of machine learning techniques to develop neuroimaging-based biomarkers has
yielded promising preliminary results. However, much of the work in this domain has not met best practice
standards from the field of machine learning. This is especially true for studies of anxiety, creating uncertainty
about the potential for anxiety biomarker development.
METHODS: We applied machine learning tools to predict trait anxiety from neuroimaging measurements in humans.
Using publicly available data from the Brain Genomics Superstruct Project, we compared a suite of neuroimaging-
based machine learning models predicting anxiety within a discovery sample (n = 531, 307 women) via k-fold
cross-validation, and we tested the final model (a stacked model incorporating region-to-region functional
connectivity, amygdala seed-to-voxel connectivity, and volumetric and cortical thickness data) in a held-out,
unseen test sample (n = 348, 209 women).
RESULTS: Though the best model was able to predict anxiety within the discovery sample (cross-validated R2

of .06, permutation test p , .001), the generalization test within the holdout sample failed (R2 of 2.04, permutation
test p . .05).
CONCLUSIONS: In this study, we did not find evidence of a generalizable anxiety biomarker. However, we encourage
other researchers to investigate this topic, utilizing large samples and proper methodology, to clarify the potential of
neuroimaging-based anxiety biomarkers.
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Biomarkers are objective, reproducible biological measures of
medical state (1). Biomarkers can perform an invaluable func-
tion by informing treatment plans or indicating the presence,
prognosis, or risk level of disease. For example, doctors test
for elevated cardiac troponin to assess whether a heart attack
has occurred (2) and determine treatment course (3). Acquired
immune deficiency syndrome is defined by CD4 (T cell) count
(4), and CD4 count is used to gauge opportunistic infection risk
(5). The identification of psychiatric biomarkers ready for use in
clinical practice has been elusive. Recently, there has been a
focus on developing psychiatric biomarkers from neuro-
imaging data. Thousands of studies have aimed to identify
brain-based differences between patients with mental illnesses
and mentally healthy patients, and authors often speculate that
the neural differences identified could form the basis of a
biomarker. However, clinically useful neuroimaging-derived
biomarkers have not emerged (6–9).

It has been argued that progress in neuroscience, psy-
chology, and psychiatry could be advanced by placing more
emphasis on prediction, rather than explanation alone (8–12).
Psychiatric neuroscience has tended to prioritize explanation
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by favoring theory-driven, tightly controlled studies (often
with small samples). Understanding the mechanisms of a
psychiatric disorder would clearly advance the ability to
develop tests and treatments. However, maximizing predic-
tion of a clinical variable is not usually an explicit goal of
these studies. A more direct emphasis on prediction of clin-
ical outcomes may speed psychiatric translation and
engender reproducible science.

Traditionally, neuroimaging studies aiming to identify bio-
markers tested for significant differences in the means of
populations with and without the disorder in a given measure(s)
like amygdala-prefrontal cortex connectivity, or blood oxygen
level–dependent signal in individual voxels during a task. This
work has taken a foundational step in highlighting the areas of
the brain where the differences between patients and non-
patients are most striking. However, a significant difference in
mean between populations does not indicate that an individual
could be classified with meaningful accuracy on the basis of
that variable in isolation. There may be enough overlap be-
tween the populations that one cannot predict illness status
with sufficient reliability (12–17).
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Recently, there has been interest in using machine learning
to develop biomarkers, as machine learning provides many
tools that can complement traditional statistical approaches. In
machine learning, prediction is typically valued over explana-
tion. In this article, we focus on supervised machine learning
models. A model, in this context, is a function that transforms
input variables, or “features,” as they are referred to in machine
learning, into a prediction of a “target variable,” like patient
group or symptom score, by learning the relationship between
the features and target variable. Machine learning models are
typically multivariate—they leverage the combined effects of
many variables to predict group membership, potentially
allowing for greater predictive power than any individual pre-
dictor (18,19).

Researchers have applied machine learning tools to neu-
roimaging measurements to differentiate patients and control
subjects, with promising but mixed success (15,20). We
identified 23 articles that have used machine learning to pre-
dict anxiety status or traits from neuroimaging data (selection
criteria in the Supplement, study characteristics in Table S1)
(21–42). Most studies classifying patients versus control sub-
jects reported accuracies of over 80%, and some reported
accuracies of over 90%. Below, we review methodological
considerations important to the interpretation of these studies.

Training and testing amodel on different participants, in order
to account for overfitting, is fundamental to the practice of
machine learning (18,19). Overfitting is the phenomenon that a
modelmay be able to predict the target variable from the training
data (data used to learn the parameters of the model) very well,
even perfectly, but fail to perform well on novel examples (test
data) that were not used to train the model. It is necessary to
apply the model to previously unseen test data to evaluate its
performance. This can be done with cross-validation, in which
the data are iteratively split into training and test sets, with
training data used to fit themodel and test data used to evaluate
it. The 23 studies of anxiety neuromarkers reviewed tended to
use cross-validation to assess predictive performance. How-
ever, to assess the model’s generalizability, it is crucial, espe-
cially if multiplemodels or variants of the analysis are testedwith
cross-validation, to additionally test the final model on a
completely held-out dataset, which only two of the reviewed
studies did (25,40). If the researchers use cross-validation
multiple times on the same dataset to assess different types
of classifiers, different feature types, or different model hyper-
parameters (without nested cross-validation), and pick the best
result to include or emphasize in the manuscript, the cross-
validation accuracy is no longer an unbiased estimate of
generalization performance. Stated differently, the researcher
risks overfitting via the model selection process (9,15,16,43).
There are many examples within the broader field of machine
learning–based psychiatric neuroimaging in which performance
on held-out datasetswas substantially worse than that obtained
by internal cross-validation, suggesting that it is dangerous to
assume that cross-validation accuracy is an unbiased assess-
ment of how the model will perform on new data (25,44–46).
Using cross-validation alone to assess models is risky because
cross-validation accuracy is a quite variable estimator of
generalization, particularly with small samples (47). So while
cross-validation or some initial validation is a necessary first
step for any machine learning model, it is strongly
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recommended to additionally test the model on a dataset that
has been completely held out throughout the analysis process
(ideally, an external dataset). However, likely owing to the high
cost of acquiring data, most of the studies reviewed did not
perform a holdout test.

Another limitation of the 23 reviewed studies is small sample
size. With the exception of 3 studies that used the Human Con-
nectome Project sample (48), none of the studies had anN.181,
and most had fewer than 100 participants. The machine learning
literature emphasizes the importance of a large sample size. The
amount of data available to a model often (but not always) has
more influence on success than algorithm choice (49). Data are
more easily overfit when the sample size is small, and this includes
“procedural” overfitting by testing multiple methods with cross-
validation. In neuroimaging datasets, the number of features
typically vastly outnumbers the number of subjects, which can
also make models more prone to overfitting (10,43,47). Owing to
technical and cultural changes within the field of neuroscience
(50,51), there has been a shift toward collection of large, cross-site
neuroimaging datasets and concatenation of existing datasets
[e.g., (48,52–55)]. This commendable effort will likely be crucial in
the emergence of biomarkers. Of course, “large” and “small” are
relative terms—machine learning applications in natural language
processing or image processing often involve millions of samples
(or more!) (56), but by neuroimaging standards, an N approaching
or exceeding 1000 is considered large (57).

Three studies that explored trait anxiety prediction utilized
the Human Connectome Project sample (40–42), the largest
sample yet studied to answer this question. Two of the 3
reported the ability to reliably predict anxious personality/
neuroticism. Though the Human Connectome Project studies
make unique contributions to the literature, they should not be
considered independent evidence because they use the same
sample. One study (40) took a particularly compelling
approach by performing holdout tests (some successful) with 2
independent datasets.

The present study pursued the development of a
neuroimaging-based anxiety biomarker with machine learning
tools, utilizing a large sample and testing the proposed model
on a completely held-out dataset. As reviewed above, this
question has only been addressed with one large sample
previously. Additionally, nearly all prior reports on this topic
have relied solely on cross-validation, and it is unclear whether
results will generalize to truly unseen samples. We tested
whether trait anxiety could be predicted from neuroimaging
measurements with a suite of machine learning algorithms,
using a large, publicly available sample. We first considered
models of whole-brain, region-to-region resting-state func-
tional connectivity data. Subsequently, we explored the utility
of adding gray matter volumetric/thickness measurements and
region-to-voxel connectivity data as features. We performed all
model comparison within a discovery sample, and tested our
final model on a held out dataset. A dimensional approach to
studying behavioral systems relevant to psychiatric disorders
may be fruitful in linking biology and mental illness (58–60);
thus, we chose to predict variation in anxiety in a nonclinical
sample. We note that our model does not produce true “pre-
dictions,” in the sense that the target variable was a measure
of current anxiety rather than future anxiety. However, we view
this study as an important analytical stepping-stone in the
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development of pragmatic clinical tools—if challenges arise in
predicting current anxiety, the same challenges may be pre-
sent in predicting future anxiety.

METHODS AND MATERIALS

Dataset

The data are from the Brain Genomics Superstruct Project
(GSP), a large-scale, multisite brain imaging project (55). The
publicly released GSP dataset consists of resting-state func-
tional magnetic resonance imaging (fMRI) and structural MRI
scans of 1570 participants. Self-report and behavioral data are
available for a subset of participants (n = 926). The Supplement
details motion- and coverage-related exclusions (47 partici-
pants). Data collection and sharing were approved by the
Partners HealthCare Institutional Review Board and the Har-
vard University Committee on the Use of Human Subjects in
Research.

Data were first split into a discovery sample (n = 531 after
exclusions) and a final model evaluation sample (referred to as
the holdout sample; n = 348 after exclusions). The holdout
neuroimaging data were sequestered (not downloaded) until
the final model was tested. The two samples did not differ in
age, sex, level of education, estimated IQ, anxiety score,
number of runs, motion statistics, site of acquisition, and
console software (ps . .32).

Target Variable

The target variable was a composite anxiety score derived
from several questionnaires administered through an online
battery (55). We used a composite score, with the rationale that
it would be more stable and less idiosyncratic than any
individual anxiety-related scale. Four trait anxiety–related
questionnaires were collected for all participants: the trait
anxiety scale from the State-Trait Anxiety Inventory (61), the
neuroticism scale from the NEO Personality Inventory (62), the
Behavioral Inhibition Scale (63), and the harm avoidance scale
from the Temperament and Character Inventory (64). The
composite anxiety score was derived [following Holmes et al.
(65)] by z-scoring each of these 4 scales across participants
and taking the mean of these 4 z-scores per participant. In
computing the composite anxiety scores for the holdout
sample, we performed z-score transformations based on the
means and standard deviations of the discovery sample. In the
Supplement, we report results for individual scales for the
best-performing model.

Neuroimaging Data Collection and Preprocessing

Imaging sequences are described in the Supplement. fMRI
data were preprocessed with FMRIB Software Library (FSL)
5.0.9 (66) and FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.
edu/) using standard methods for resting-state functional
connectivity analysis (see Supplement). Structural data was
processed, and region-wise volume and cortical thickness
measurements were extracted in FreeSurfer (see Supplement).

Functional Connectivity Measures

In the model building/selection phase, working with the dis-
covery sample, we evaluated 6 methods for parceling the brain
Biological Psychiatry: Cognitive Neuroscience and Ne
into regions from which to derive connectivity measurements.
Table S2 lists the 6 parcellations evaluated. The best-
performing method in the discovery sample was the Free-
Surfer segmentation (67,68).

To construct region-to-region connectivity features, we
extracted the mean blood oxygen level–dependent signal time
course from each region in the parcellation. We computed the
Pearson’s correlation in signal between each pair of regions
(transformed with Fisher’s r-to-Z transformation). These Z
values were used as features in the models.

Some of the stacked models utilized voxelwise connectivity
maps. Each voxel’s connectivity to a given seed region was
used as a feature. These maps were generated with FSL using
FreeSurfer-defined seed regions. See the Supplement for
additional details on functional connectivity measures.
Modeling/Model Selection

Modeling was carried out in Python with the scikit-learn
package (69). We used R2, calculated on the test data, as an
evaluation metric (see the Supplement for discussion of R2).

Within the discovery sample, each model was constructed
and evaluated with stratified k-fold cross-validation (k = 6). For
several of the models tested, we tuned a hyperparameter of
the model with nested cross-validation (see the Supplement
for further description of modeling, cross-validation, and
hyperparameter tuning). Various model classes were evaluated
in the discovery sample, including ridge regression, lasso
regression, partial least squares regression, principal compo-
nents regression, random forest regression, support vector
regression with a linear or polynomial kernel, relevance vector
regression, and the “connectome-based predictive modeling”
approach (70–72). We also attempted to specifically replicate
methods from prior trait anxiety prediction studies (see the
Supplement). Table S3 lists models tested and hyper-
parameters tuned.

Several models evaluated in the discovery sample were
stacked models. Model stacking is a method of combining
predictions from several models (referred to as base models),
by building a model in which the predictions of base models
serve as features. We combined models that made predictions
based on different data sources, such as region-to-region
connectivity, structural MRI data, and voxelwise connectivity
data (see the Supplement and Figure S1 for detailed expla-
nation of model stacking).

To assess the significance of the R2 observed in the best
model (the model with the highest R2), we used permutation
testing (see the Supplement).

To address the possibility that the model could be learning
to predict some confound rather than anxiety scores, we
performed a control analysis in the discovery sample with the
best model, in which we regressed out potential confounds
from the features. We also performed an analysis on censored
data (see the Supplement).

We tested whether the model that had performed best in the
discovery sample could predict anxiety in the holdout sample.
We retrained this best-performing model using the entire dis-
covery sample and generated predictions of this model for the
unseen holdout data. We computed the R2 with these holdout
predictions and assessed significance with a permutation test.
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Data and Code Availability

The imaging data are publicly available at http://
neuroinformatics.harvard.edu/gsp/. Some data, including
anxiety-related questionnaires, require approval for access
(instructions at http://neuroinformatics.harvard.edu/gsp/get).
Code used to run the analyses is available upon request.
Figure 1. Sample heterogeneity in trait anxiety. Distribution of State-Trait
Anxiety Index–trait anxiety subscale (STAI-T) in the complete sample
analyzed in this article (n = 879), and in recent clinical studies of anxiety (n =
12). Filled bars show the frequency of scores in the current sample. Empty
bars show the frequency of mean scores of samples with anxiety disorders
or posttraumatic stress disorder from recent studies (85–96).
RESULTS

Sample Characteristics

Across the discovery and holdout samples, participants had a
mean age of 21.59 6 2.87 years, ranging from 18 to 35 years
of age. Age in the public GSP release is binned by 2 years to
protect the privacy of participants, so the mean and standard
deviation are not exact. The sample was 59% women. To
illustrate the range of anxiety-like phenotypes present in the
sample, Figure 1 shows a histogram of scores on the State-
Trait Anxiety Index. For reference, this figure illustrates the
mean trait anxiety scores of samples of patients with anxiety
disorders or posttraumatic stress disorder in recent studies. It
is apparent from the figure that the GSP participants are not
from a clinical sample, but some participants do show levels of
anxiety comparable to patient populations.

Discovery Sample Model Performance

The model producing the greatest cross-validated R2 (within
the discovery sample) was a stacked model that incorporated
region-to-region connectivity data, volumetric/cortical thick-
ness data, and voxelwise bilateral amygdala connectivity data
(model 1 from Table S3). The regions used as seeds for the
region-to-region and amygdala voxelwise connectivity features
came from the FreeSurfer segmentation. This model resulted in
a cross-validated R2 of .06. Figure 2A shows the relationship
between actual anxiety scores and predicted anxiety scores.
This level of performance significantly exceeded chance levels
(p , .001, as determined by a permutation test) (Figure 2B).
Performance of other models tested in the discovery sample is
summarized in Table S3. Anxiety could also be predicted from
censored connectivity data, and data that had undergone
confound regression (see Supplement).
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Holdout Sample Test

We tested the best model in the holdout sample after training it
with the entire discovery sample. The R2 in the holdout sample
was 2.04, which failed to achieve significance with a permu-
tation test (Figure 3).

One possible explanation for the poor performance in the
holdout dataset is that by testing so many models within the
discovery sample (see Table S3), we may have overfit the
model to the discovery sample through the model selection
process. To attempt to understand the reason for the gener-
alization failure, we tested this hypothesis by examining
whether a model that was tested early in the model compari-
son process (with an R2 of .03 in the discovery sample), a ridge
Figure 2. Model performance in the discovery
sample. (A) Actual anxiety scores plotted against
predicted anxiety scores, in the discovery sample.
Model predictions are from the best-performing
model, model 1 (see Table S3). (B) Empirical null
distribution of R2 generated in permutation test, in
the discovery sample. The dotted black line shows
the 95% confidence bound. The solid red line shows
the actual R2 of the model using the (unscrambled)
data.
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Figure 3. Model performance in the holdout
sample. (A) Actual anxiety scores plotted against
predicted anxiety scores, in the holdout sample. (B)
Empirical null distribution of R2 generated in per-
mutation test, in the holdout sample. The dotted
black line shows the 95% confidence bound. The
solid red line shows the actual R2 of the model using
the (unscrambled) data.
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regression from region-to-region connectivity data (model 4
from Table S3), outperformed the final model. This ridge model
that had been tested early in the model exploration process did
not outperform the final model (R2 of 2.06 in the holdout
sample).
DISCUSSION

In this study, we attempted to predict trait anxiety in a large
sample by applying machine learning tools to multimodal
neuroimaging data. The best model (determined in the dis-
covery sample) was a stacked model, with 3 ridge regression
base models that used different data sources as features:
whole-brain region-to-region connectivity data, amygdala
seed-to-voxel connectivity data, and gray matter volumetric/
thickness data. This model significantly predicted anxiety
scores in the discovery sample as assessed by cross-
validation, but when tested on a previously unseen holdout
sample, it did not successfully predict anxiety scores. Our
ability to predict anxiety within the discovery sample is
consistent with prior work (21–41). However, when we tested
generalizability to a holdout sample, a step most previous
studies did not take, the model failed to make accurate out-of-
sample predictions. Thus, our findings do not support the
hypothesis that anxiety is predictable from neural
measurements.

We studied a limited set of brain phenotypes and applied a
circumscribed set of approaches. Our study should be
considered a proof of concept for evaluating relations linking
brain functions to behavior rather than decisively addressing
the full range of possible associations between neuroimaging
measures and anxiety. There are multiple possible explana-
tions for why we were ultimately unable to predict anxiety
scores.

One set of possible reasons for our failure to predict
anxiety relates to the anxiety phenotype examined. We did
not analyze a clinical sample, so perhaps there was not
sufficient clinical heterogeneity for the model to learn to
make accurate predictions. As shown in Figure 1, there were
participants with anxiety scores close to the mean scores of
anxiety patients in clinical studies, but the number of par-
ticipants with scores in this range was relatively small, and
Biological Psychiatry: Cognitive Neuroscience and Ne
perhaps insufficient to train the model. Though the sample
used here was large in comparison to those from most fMRI
studies, larger samples exist, such as the UK Biobank
sample (52), which includes over 10,000 subjects. Prediction
might be improved in these larger samples, as the quantity
of training data is an important determinant of model per-
formance, and as there might be more subjects in a high
anxiety range to inform the model. We encourage other re-
searchers to investigate this question in large open-access
samples. However, despite the lack of participants in this
high range in the GSP sample, there is still substantial
variability, and one would expect that this healthy hetero-
geneity would be predictable from neural measurements.
Additionally, anxiety scores were only assessed once. Mul-
tiple assessments might yield a more stable estimate of the
phenotype and improve prediction. It has been suggested
that the nonbiological nature of current diagnostic categories
has stymied progress in identifying biological mechanisms of
these disorders (6). This argument can be made about
continuous variables as well—a measurement may not
“carve nature at the joints.” It is likely that our anxiety
measure does not reflect a single process; relatedly, 2 in-
dividuals could have the same elevated anxiety score with
different underlying brain mechanisms, and this may impair
prediction of the score.

Feature-related issues could also have impaired prediction.
One limitation to note is that the imaging sequences used lack
the spatial and temporal precision of current approaches (data
collection began in 2008). It is possible that with more state-of-
the-art sequences, prediction would be facilitated. Relatedly,
each subject had 6 to 12 minutes of resting-state data, but
recent studies have suggested that substantially improved
reliability of connectivity estimates can be obtained withw15 to
25 minutes of data (73–75). Others have recently shown that the
inclusion of task-based fMRI data can improve connectivity
estimates and predictive performance from connectivity data
(76,77). A limitation of the current article is the unavailability of
longer resting-state scans and task-based data in these
subjects.

Model selection-related issues could also underlie our fail-
ure to predict anxiety in the holdout set. One possibility is that
a model exists that could successfully predict anxiety from the
uroimaging August 2020; 5:799–807 www.sobp.org/BPCNNI 803
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measurements obtained, but we did not identify it. However, in
the discovery sample, we tested a large range of both linear
and nonlinear models in combination with different parcella-
tions for extracting connectivity features (see Table S2).
Conversely, another concern we had was that we may have
tested too many models in the discovery sample, leading to an
overfitting of the model selection process to the discovery
sample. In other words, a model tested early in the exploration
of the discovery sample may have actually outperformed the
chosen model when tested on the holdout sample, despite
performing worse on the discovery sample. To investigate
whether this could be the case, we performed a supplementary
test in the holdout sample of a model that had been tested
early in the model comparison process. However, this earlier
model also failed to accurately predict anxiety scores in the
holdout sample. This failure did not support the explanation
that we could have obtained better holdout performance had
we stopped the model testing in the discovery sample sooner.
It does, however, allow for the possibility that anxiety was not
predictable from the measurements obtained, but the good
performance in the discovery sample was illusory and due to
procedural overfitting.

We close by providing suggestions on how to proceed with
research on neuroimaging-based psychiatric biomarker
development, given our observations in the current study.
Previous anxiety biomarker research has tended to use small
samples [only one large-scale sample investigated previously
(40–42), with mixed results] and evaluate models with cross-
validation only. As demonstrated here, it is possible to ach-
ieve promising results via internal cross-validation that do not
generalize to a held out sample. Therefore, we recommend that
future studies utilize large samples and test their models on
truly unseen holdout data. Heterogeneity in preprocessing and
statistical approaches creates problems for interpreting and
replicating traditional neuroimaging analyses, but machine
learning–based neuroimaging studies arguably suffer from
these issues even more. The number of possible models from
which to choose is large, methods for assessing generalization
vary, and standards of reporting/visualizing feature importance
(which also depend on which model is used) are undefined.
Therefore, we recommend further research on methods
development that can illuminate best practices [e.g., (78)], and
that studies attempt to replicate the specific methods of other
studies. The continued acquisition of new large samples will
also undoubtedly be crucial to biomarker development. One
difficulty in this field is that the phenotypes we want to predict
may be multidimensional and may not derive from a single
biological mechanism (6,79). We see promise in applying un-
supervised machine learning methods to biomarker develop-
ment, as these methods may circumvent this issue [although
see Dinga et al. (80)]. Another class of methods that could help
with this issue is multi-output learning, in which multiple phe-
notypes are predicted with the same model (81). This meth-
odology takes advantage of relationships between different
target variables (possibly helping to disambiguate cases in
which subjects have the same anxiety score with different
underlying mechanisms) and has been shown to improve on
single-output model predictions (81). Last, we note that in our
comparisons of models within the discovery sample, a stacked
804 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
model that combined predictions from multimodal data per-
formed best. Though we interpret this result with caution, as
this model did not ultimately successfully predict anxiety, the
result is consistent with other neuroimaging biomarker studies
suggesting that stacked multimodal models outperform non-
stacked models (81,82).

The potential to develop neuroimaging biomarkers for
anxiety is unclear, but some research suggests that success
is possible. In this study, we were unable to find evidence of
a generalizable anxiety biomarker. Though this research area
is proving challenging, some encouraging results have
emerged. Outside the field of psychiatry, there have been
successful attempts at producing generalizable neuro-
markers of psychological states and traits (71,83,84). Given
the potential of biomarkers to revolutionize psychiatry, it is
important to rigorously explore their possible development
and application.
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