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ABSTRACT
BACKGROUND: There is considerable interest in a dimensional transdiagnostic approach to psychiatry. Most
transdiagnostic studies have derived factors based only on clinical symptoms, which might miss possible links be-
tween psychopathology, cognitive processes, and personality traits. Furthermore, many psychiatric studies focus on
higher-order association brain networks, thereby neglecting the potential influence of huge swaths of the brain.
METHODS: A multivariate data-driven approach (partial least squares) was used to identify latent components linking
a large set of clinical, cognitive, and personality measures to whole-brain resting-state functional connectivity
patterns across 224 participants. The participants were either healthy (n = 110) or diagnosed with bipolar disorder
(n = 40), attention-deficit/hyperactivity disorder (n = 37), schizophrenia (n = 29), or schizoaffective disorder (n = 8).
In contrast to traditional case-control analyses, the diagnostic categories were not used in the partial least
squares analysis but were helpful for interpreting the components.
RESULTS: Our analyses revealed three latent components corresponding to general psychopathology, cognitive
dysfunction, and impulsivity. Each component was associated with a unique whole-brain resting-state functional
connectivity signature and was shared across all participants. The components were robust across multiple
control analyses and replicated using independent task functional magnetic resonance imaging data from the
same participants. Strikingly, all three components featured connectivity alterations within the somatosensory-
motor network and its connectivity with subcortical structures and cortical executive networks.
CONCLUSIONS: We identified three distinct dimensions with dissociable (but overlapping) whole-brain resting-state
functional connectivity signatures across healthy individuals and individuals with psychiatric illness, providing
potential intermediate phenotypes that span diagnostic categories. Our results suggest expanding the focus of
psychiatric neuroscience beyond higher-order brain networks.

Keywords: Cognitive dysfunction, Impulsivity, Phenotypes, Psychopathology, Resting-state functional connectivity,
Somatosensory-motor

https://doi.org/10.1016/j.biopsych.2019.06.013
Substantial overlap in clinical symptoms (1,2), cognitive defi-
cits (3), genetic risk factors (4) across psychiatric disorders,
and high comorbidity rates (5) suggest that current categorical
classifications might not be carving nature by its joints. In
response, transdiagnostic initiatives, such as the Research
Domain Criteria (6,7) and the Hierarchical Taxonomy of Psy-
chopathology (8,9), have worked toward new dimensionally
oriented approaches by integrating findings from genetics,
neuroimaging, and cognitive science.

Many recent transdiagnostic studies have derived latent
dimensional factors that best explain the structure of psy-
chopathology along with associated neural correlates. One
example is the general psychopathology (or p) factor (10–15),
which is thought to reflect individuals’ susceptibility to develop
“any and all forms of common psychopathologies” (16). The
N: 0006-3223 Biologic
p factor has been extended to other clinical dimensions, such
as internalizing and externalizing symptoms (10,11,17,18).
Importantly, these factors were extracted from the general
population, supporting the idea that psychopathology lies on a
spectrum spanning healthy and disease states. However, most
studies have focused on deriving factors based only on clinical
symptoms, which might be insensitive to intricate links be-
tween psychopathology, cognitive processes, and personality
traits. Therefore, considering a broader set of behavioral
measures might provide a more comprehensive characteriza-
tion of individuals’ phenotypic variability across mental health
and disease.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is widely used to measure intrinsically organized patterns
of spontaneous signal fluctuations (19), commonly referred to
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as resting-state functional connectivity (RSFC). Because many
psychiatric disorders are characterized by disturbances of
large-scale brain network organization (20), RSFC might be a
powerful tool for understanding transdiagnostic dimensions.
Indeed, studies have found significant overlap in neural circuits
altered in different disorders, suggesting common neurobio-
logical mechanisms (21–25). RSFC alterations in higher-order
(e.g., default mode, executive) networks are also associated
with the p factor (14) or clinical symptoms (17,26). However,
many psychiatric imaging studies have focused on higher-
order association networks (20,27), neglecting the potential
influence of huge swaths of cortex. Indeed, complex clinical
and behavioral phenotypes arise from coordinated interactions
throughout the entire connectome (28–30), suggesting the
importance of examining whole-brain connectivity without
prior assumptions.

Here, we used data from the University of California, Los
Angeles (UCLA) Consortium for Neuropsychiatric Phenomics
(CNP) (31), a unique dataset in which the imaging and
behavioral assessment were focused on working memory and
inhibitory control, two domains that are exceedingly relevant in
multiple psychiatric disorders. This allowed us to consider
behavioral phenotypes beyond the clinical symptoms typically
examined in many transdiagnostic studies (10,11,14,15,17).
Using a multivariate data-driven approach, we extracted latent
components (LCs) that simultaneously link a large set of
behavioral measures spanning clinical, cognitive, and per-
sonality domains with whole-brain RSFC patterns across
healthy control individuals (HCs) and individuals with schizo-
phrenia (SZ), schizoaffective disorder (SZAD), bipolar I disorder
(BD), or attention-deficit/hyperactivity disorder (ADHD). This
approach yielded dimensional components present in varying
degrees among individuals as opposed to assigning each in-
dividual to a single categorical biotype (12,32). Furthermore, in
contrast to traditional case-control analyses, the diagnostic
labels were not utilized in the analysis but were used to inter-
pret the behavioral-RSFC dimensions post hoc.

Our analyses revealed three transdiagnostic components
corresponding to general psychopathology, cognitive
dysfunction, and impulsivity. Each component was associated
with a unique whole-brain RSFC pattern, such that interindi-
vidual variation in the expression of the three RSFC configu-
rations captured individuals’ variability along these behavioral
dimensions. Strikingly, the three components all featured
altered connectivity within the somatosensory-motor (soma-
tomotor) system and in its connections to subcortical and
cortical executive networks. Overall, this study identified three
LCs as likely transdiagnostic phenotypes, thereby offering a
putative model for explaining comorbidity across disorders.
Our results add further evidence to the importance of
considering a broad range of behavioral measures and
expanding the focus of psychiatric neuroscience beyond
higher-order association networks.

METHODS AND MATERIALS

Participants

We downloaded the UCLA CNP dataset from the public
database OpenfMRI (33). The CNP dataset (31) comprised
multimodal imaging and behavioral data from 272 participants,
780 Biological Psychiatry November 15, 2019; 86:779–791 www.sobp.
including 130 HCs, 49 patients with BD, 43 patients with
ADHD, 39 patients with SZ, and 11 patients with SZAD. These
four disorders were selected by the CNP because they all were
thought to involve some degree of impairment in response
inhibition and memory mechanisms (34). See Supplemental
Methods for details about participant recruitment.

After receiving a verbal explanation of the study, partici-
pants gave written informed consent following procedures
approved by the Institutional Review Boards at UCLA and the
Los Angeles County Department of Mental Health.

Clinical and Behavioral Assessment

All participants underwent a semistructured assessment with
the Structured Clinical Interview for the DSM-IV–Text Revision
(35). Demographic and clinical data for each group are sum-
marized in Table 1.

The CNP behavioral assessment included an extensive set
of clinical, cognitive, and personality scores (listed in
Supplemental Table S1). We excluded behavioral measures
from the partial least squares (PLS) analysis when scores were
missing for at least 1 participant among the 224 participants
who survived MRI preprocessing quality controls (see below).

A final set of 54 behavioral and self-report measures from 19
clinical, cognitive, and psychological tests were included in the
PLS analysis. Behavioral measures for each group are shown
in Supplemental Table S2. Notably, most clinical measures
were excluded from the PLS analysis because they had not
been administered to healthy individuals. However, excluded
behavioral measures were considered in post hoc analyses
(Supplemental Table S3).

MRI Acquisition and Processing

Structural and functional MRI data were acquired on two 3T
Siemens Trio scanners (Siemens, Erlangen, Germany) at
UCLA. fMRI acquisition comprised an rs-fMRI scan and seven
fMRI tasks. See Supplemental Methods for details.

Of the 272 participants, 7 participants did not have an
anatomical scan, 4 participants did not have an rs-fMRI scan,
and 1 participant had signal dropout in the cerebellum (36),
resulting in 260 participants undergoing preprocessing. The
neuroimaging data were processed using a previously pub-
lished pipeline (37,38). The pipeline code is available at https://
github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
preprocessing/CBIG_fMRI_Preproc2016.

Structural MRI data were processed using FreeSurfer 5.3.0,
a suite of automated algorithms for reconstructing accurate
surface mesh representations of the cortex from individual
participants’ T1 images (39–42). The cortical surface meshes
were then registered to a common spherical coordinate sys-
tem (43,44).

rs-fMRI data were preprocessed with the following steps: 1)
removal of the first four frames, 2) slice time correction with
FSL (45,46), and 3) motion correction using rigid body trans-
lation and rotation with FSL. The structural and functional im-
ages were aligned using FsFast boundary-based registration
(47). Framewise displacement (48) and root mean square of
voxelwise differentiated signal (DVARS) (49) were computed
using fsl_motion_outliers. Volumes with framewise displace-
ment . 0.2 mm or DVARS . 50 were marked as outliers
org/journal
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Table 1. Demographic and Clinical Data for Each Diagnostic Group

HC (n = 110) ADHD (n = 37) BD (n = 40) SZ (n = 29) SZAD (n = 8) F or c2 p Value

Demographics

Age, years, mean (SD) 31.26 (8.66) 31.22 (10.11) 34.78 (9.24) 35.59 (9.27) 35.38 (8.94) 2.34 5.6 3 1022

Female sex, n (%) 53 (48) 17 (46) 17 (43) 4 (14) 4 (50) 11.60 2.1 3 1022

Education, years, mean (SD) 15.19 (1.59) 14.57 (1.85) 14.43 (1.91) 12.62 (1.47) 13.38 (1.77) 14.49 1.6 3 10210a

Site 1, n (%) 89 (81) 19 (51) 18 (45) 13 (45) 4 (50) 27.74 1.4 3 1025a

Head Motion

FD, mean (SD)b 0.06 (0.03) 0.06 (0.03) 0.07 (0.03) 0.08 (0.03) 0.09 (0.05) 3.50 8.5 3 1023a

Lifetime Substance Usec

0 substance, n (%) 69 (63) 15 (41) 6 (15) 9 (31) 2 (25) 32.38 1.6 3 1026a

1 substance, n (%) 24 (22) 11 (30) 8 (20) 5 (17) 0 (0) 4.06 4.0 3 1021

21 substances, n (%) 17 (15) 11 (30) 26 (65) 15 (52) 6 (75) 44.65 4.7 3 1029a

No. substances, mean (SD) 0.62 (1.04) 1.32 (1.63) 2.73 (2.11) 2.07 (2.15) 3.00 (2.51) 16.67 6.1 3 10212a

Current Medication (by Target)d

Dopaminergic, n (%) 0 (0) 10 (27) 17 (42) 19 (66) 6 (75) 44.80 1.9 3 10227a

Serotonergic, n (%) 0 (0) 2 (5) 14 (35) 17 (59) 2 (25) 71.14 1.6 3 10238a

GABAergic, n (%) 0 (0) 2 (5) 13 (32) 5 (17) 0 (0) 13.50 7.4 3 10210a

Glutamatergic, n (%) 0 (0) 1 (3) 13 (32) 3 (10) 2 (25) 25.11 3.9 3 10217a

Norepinephrinergic, n (%) 0 (0) 10 (27) 14 (35) 9 (31) 4 (50) 16.64 6.4 3 10212a

Others, n (%) 0 (0) 1 (3) 5 (12) 5 (17) 1 (12) 4.87 8.8 3 1024a

No. medications, mean (SD) 0 (0) 0.59 (1.14) 2.33 (1.85) 2.00 (1.51) 2.50 (1.77) 47.19 1.4 3 10228a

Groups were compared with either analyses of variance (for continuous measures) or chi-square tests (for categorical measures).
ADHD, attention-deficit/hyperactivity disorder; BD, bipolar disorder; FD, framewise displacement; GABA, gamma-aminobutyric acid; HC, healthy

control; SZ, schizophrenia; SZAD, schizoaffective disorder.
ap Value that survived false discovery rate correction (q , .05).
bFramewise displacement was computed as per Kong et al. (37).
cLifetime substance use included substance abuse and/or dependence for nicotine, alcohol, cannabis, cocaine, amphetamine, sedatives/

hypnotics/anxiolytics, inhalants, opioids and hallucinogens.
dMedication was sorted by the neurotransmitter system(s) targeted by the medication currently used by participants, based on the Neuroscience-

based Nomenclature [NbN-2 (86,87)] (http://nbn2r.com/). The full list of medications and their categorization can be found in Supplemental Table S4.
Note that percentages do not add up to 100% because individuals often take more than one medication.

Figure 1. Brain parcellation. (A) Schaefer’s 400 cortical regions (53). The parcels are assigned to 17 resting-state networks, which are further grouped into 8
major networks: default mode (Default A/B/C), executive control (Control A/B/C), somatomotor (SomMot A/B), visual (Visual A/B), limbic (Limbic A/B), salience/
ventral attention (Sal/VentAttn A/B), dorsal attention (DorsAttn A/B), and temporoparietal (TempPar) (53). We note that the 400 cortical regions were not
symmetric. (B) Nineteen subcortical regions (54). All subcortical regions, except the brainstem, are lateralized. The 419 regions of interest were used to
compute 419 3 419 resting-state functional connectivity matrices for each participant. Because the resting-state functional connectivity matrices were
symmetric, only the upper triangular portions of the matrices were considered in subsequent analyses (although full matrices are shown for visualization). DC,
diencephalon.
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together with 1 volume before and 2 volumes after. Uncen-
sored segments of data fewer than 5 contiguous volumes were
also flagged as outliers (50). Scans with more than 50% out-
liers were removed completely. A total of 36 participants were
excluded for excessive head motion, resulting in a final sample
of 224 participants (110 HCs, 40 patients with BD, 37 patients
with ADHD, 29 patients with SZ, 8 patients with SZAD).

We regressed out 18 nuisance regressors comprising 6
motion parameters, averaged ventricular signal, averaged
white matter signal, global signal, and their temporal de-
rivatives. Outlier volumes were ignored when computing the
regression coefficients. The data were interpolated across
censored frames using least squares spectral estimation (51).
A bandpass filter (0.009 Hz # f # 0.08 Hz) was applied.
Finally, the preprocessed fMRI data were projected onto the
nonsymmetric FreeSurfer fsaverage6 surface space. Because
global signal regression is controversial (52), we performed
control analyses using an alternative strategy (see “Control and
Reliability Analyses” section below).

Resting-State Functional Connectivity

RSFC (Pearson’s correlation) was computed among the average
time series of 400 cortical (53) and 19 subcortical (54) regions of
interest (ROIs) covering the entire brain (Figure 1), resulting in a
419 3 419 RSFC matrix for each participant. Because age, sex,
education, site, andheadmotion (mean framewise displacement)
were different across groups (Table 1), they were regressed from
both behavioral and RSFC data.

Partial Least Squares

PLS is a multivariate data-driven statistical technique that max-
imizes the covariance between two matrices by deriving LCs,
which are optimal linear combinations of the original matrices
(55,56). We applied PLS to the RSFC and behavioral measures of
all participants while ignoring diagnostic categories. Each LC is
characterized by a distinct RSFC pattern (called RSFC saliences)
and a distinct behavioral profile (called behavioral saliences). By
linearly projecting the RSFC and behavioral measures of each
participant onto their respective saliences, we obtain individual-
specific RSFC and behavioral composite scores for each LC.
By construction, PLS seeks to find saliences that maximize
across-participant covariance between the RSFC and behavioral
composite scores. The number of significant LCs was deter-
mined by a permutation test (1000 permutations). The p values
=

Figure 2. First latent component (LC1) reflects general psychopathology. (A)
(RSFC) and behavioral composite scores of participants. Scatterplots for each prim
distribution obtained by permutation testing. Note that the null distribution is not c
for LC1. (B) Group differences in RSFC and behavioral composite scores. Aste
Healthy control individuals (HC) had significantly lower RSFC and behavioral co
deficit/hyperactivity disorder (ADHD) also had significantly lower behavioral com
(C) Top 20 strongest correlations between participants’ behavioral measures and
with higher measures of psychopathology and worse control. Error bars indica
values indicate worse outcomes are colored brown. For example, anxiety is colo
correlations between participants’ RSFC data and their RSFC composite scores
associated with LC1. (E) Thresholded correlations between participants’ RSFC
between-network blocks with significant bootstrapped Z scores are shown (false d
their RSFC composite scores, averaged within and between networks with signifi
Default, default mode; DorsAttn, dorsal attention; Sal/VentAttn, salience/v
temporoparietal.
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(from the permutation) for the top five LCs were corrected for
multiple comparisons using a false discovery rate (FDR) of q ,

.05. See Supplemental Methods for details.
To interpret the LCs, we computed Pearson’s correlations

between the original RSFC data and RSFC composite scores as
well as between the original behavioral measures and behavioral
composite scores for each LC (57,58). A large positive (or
negative) correlation for a particular behavioral measure for a
given LC indicates greater importance of the behavioral mea-
sure for the LC. Similarly, a large positive (or negative) correla-
tion for a particular RSFC measure for a given LC indicates
greater importance of the RSFC measure for the LC. To esti-
mate confidence intervals for these correlations, we applied a
bootstrapping procedure that generated 500 samples from
subjects’ RSFC and behavioral data. Z scores were calculated
by dividing each correlation coefficient by its bootstrap-
estimated standard deviation. To limit the number of multiple
comparisons, the bootstrapped correlations between the RSFC
data and RSFC composite scores were averaged across ROI
pairs within and between 18 networks (Figure 1), resulting in
18 3 18 correlation matrices, before computing bootstrapped Z
scores. The Z scores were converted to p values and were FDR
corrected (q , .05) along with other post hoc tests. Code for
this work can be found here: https://github.com/Thomas
YeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/
Kebets2019_TransdiagnosticComponents.

Post Hoc Analyses

Two-sample t tests were performed to test whether RSFC and
behavioral composite scores for LCs 1, 2, and 3 were different
between participants with different diagnoses, medication, and
substance use. See Supplemental Methods for details.

We also tested whether the composite scores were associ-
ated with age, sex, years of education, acquisition site, head
motion, and medication load. Pearson’s correlations were per-
formed for continuous measures, and t tests were performed for
binary measures. As control analyses, we applied generalized
linear models with linear hypothesis tests to assess the impact
of diagnosis (while controlling for medication and substance
use), medication (while controlling for diagnosis and substance
use), and substance use (while controlling for diagnosis and
medication use). See Supplemental Methods for details.

All post hoc analyses used all participants, and FDR
correction (q , .05) was applied to all post hoc tests.
Correlation between individual-specific resting-state functional connectivity
ary diagnostic group are found in Supplemental Figure S9. Inset shows null
entered at zero. The dashed line indicates the actual singular value obtained
risks indicate t tests that survived false discovery rate correction (q , .05).
mposite scores compared with all patient groups. Patients with attention-
posite scores compared with patients with schizoaffective disorder (SZAD).
their behavioral composite scores. Greater loading on LC1 was associated

te bootstrapped standard deviation. Behavioral measures for which higher
red brown because higher values indicate worse anxiety. (D) Unthresholded
. Red (or blue) color indicates that greater RSFC is positively (or negatively)
data and their RSFC composite scores, whereby only within-network or
iscovery rate q, .05). (F) Correlations between participants’ RSFC data and
cant bootstrapped Z scores. BD, bipolar disorder; Control, executive control;
entral attention; SomMot, somatomotor; SZ, schizophrenia; TempPar,
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Control and Reliability Analyses

Several analyses were performed to ensure robustness of the
LCs (Supplemental Methods). First, we testedwhether we could
replicate the brain-behavior associations identified with rs-fMRI
using task fMRI data. Second, we performed a 5-fold cross-
validation of the PLS analysis. Third, we applied principal
component analysis to the behavioral measures to test the
robustness of our results. Fourth, we applied quantile normali-
zation to improve the Gaussianity of the behavioral data distri-
butions before PLS. Moreover, four behavioral measures were
skewed, so PLS was recomputed after having removed these
measures. Furthermore, some clinical measures might be too
similar to diagnostic variables, so we recomputed PLS after
removing measures that distinguished one diagnostic group
from other groups. Fifth, instead of regressing age, sex, edu-
cation, site, and motion from the data, these variables were
added to the behavioral data for thePLSanalysis. Sixth,weused
CompCor (59) instead of global signal regression in the rs-fMRI
preprocessing. Furthermore, to ensure that our results were not
driven by the HCs or by case-control differences, PLS was
recomputed using only control individuals or only patients.
Finally, PLS was recomputed for participants of each site
separately to ensure that results were not driven by a single site.

RESULTS

PLS Reveals Three Robust LCs Linking Behavior
and Brain Function

We applied PLS to whole-brain RSFC and 54 behavioral
measures of 224 participants across diagnostic categories.
Supplemental Figure S1 shows the amount of covariance
explained by each LC. Four LCs survived permutation testing
with FDR correction (q , .05) (Figures 2A, 3A, and 4A and
Supplemental Figure S2A). Because the fourth LC
(Supplemental Figure S2) was not robust to control
analyses (see below), we focus on the first, second, and third
LCs (LC1, LC2, and LC3, respectively) for the remainder of this
article. We also note that none of the confounds (age, sex,
education, site, or motion) examined in Table 1 was associated
with any component (Supplemental Table S5).

LC1 Reflects General Psychopathology

LC1 accounted for 20% of RSFC-behavior covariance
(Supplemental Figure S1), with significant association (r = .78,
=

Figure 3. Second latent component (LC2) reflects cognitive dysfunction. (A)
(RSFC) and behavioral composite scores of participants. Scatterplots for each prim
distribution obtained by permutation testing. Note that the null distribution is not ce
LC2. (B)Groupdifferences inRSFCandbehavioral composite scores. Asterisks ind
schizophrenia (SZ) had significantly higher RSFC and behavioral composite score
andbipolar disorder (BD). Healthy control individuals (HC) also hadhigher RSFCcom
patients with ADHD and BD, and lower behavioral composite scores than patients
measures and their behavioral composite scores. Greater loading on LC2 was ass
language, memory, and executive functions) but also with less daydreaming, soci
strapped standard deviations. Behavioralmeasures forwhich higher values indicate
brownbecausehigher values indicatemoreADHDsymptoms. (D)Unthresholdedco
Red (or blue) color indicates that greater RSFC is positively (or negatively) associate
their RSFCcomposite scores, whereby onlywithin-network or between-network blo
.05). (F)Correlations between participants’RSFC data and their RSFC composite s
scores. Control, executive control; Default, default mode; DorsAttn, dorsal attent
schizoaffective disorder; TempPar, temporoparietal; Vis reprod, visual reproductio
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p = .007) between RSFC and behavioral composite scores
(Figure 2A).

Figure 2C shows the top correlations between LC1’s
behavioral composite score and the 54 behavioral measures
(Supplemental Table S3 shows all behavioral measures,
including those not included in the PLS analysis, e.g., clinical
measures not administered to HCs). Greater behavioral com-
posite score was associated with greater psychopathology
(e.g., mood lability, dysfunctional impulsivity, anxiety) and worse
control (which measures capacity to control one’s behavior).

Correlations between LC1’s RSFC composite scores and the
RSFCdata among 400 cortical and 19 subcortical ROIs (Figure 1)
are shown in Figure 2D (unthresholded correlations) and
Figure 2E (significant correlations). Figure 2F shows the signifi-
cant RSFC correlations averaged within and between networks.
Greater RSFC composite score was associated with decreased
RSFC within the somatomotor networks. Sensory-motor (visual
and somatomotor) and dorsal attention A networks showed
greater RSFC with the salience B network and with subcortical
regions (thalamus, ventral diencephalon, cerebellum, caudate,
putamen, and pallidum).

Consistent with the interpretation that LC1 reflects general
psychopathology, both RSFC and behavioral composite scores
were lower in HCs compared with all patient groups (Figure 2B)
even after controlling for medication and substance use
(Supplemental Figure S3). Additional results on medication and
substance use are found in Supplemental Table S5,
Supplemental Figures S4 to S7, and Supplemental Results.
LC2 Reflects Differential Cognitive Impairment
Between Disorders

LC2 accounted for 12% of RSFC-behavior covariance
(Supplemental Figure S1), with significant association (r = .83,
p = .016) between RSFC and behavioral composite scores
(Figure 3A). Greater behavioral composite score was associ-
ated with worse cognitive performance in language, memory,
and executive function but also with less social anxiety, motor
impulsivity, and ADHD symptoms (Figure 3C).

Greater RSFC composite score was associated with
increased RSFC within the somatomotor and default A net-
works and between the somatomotor and visual networks
(Figure 3D–F). Somatomotor and attentional networks showed
decreased RSFC with control B and salience B networks.
Correlation between individual-specific resting-state functional connectivity
ary diagnostic group are found in Supplemental Figure S10. Inset shows null
ntered at zero. The dashed line indicates the actual singular value obtained for
icate t tests that survived false discovery rate correction (q, .05). Patientswith
s compared with patients with attention-deficit/hyperactivity disorder (ADHD)
posite scores than patientswithBD, higher behavioral composite scores than
with SZ. (C) Top 20 strongest correlations between participants’ behavioral
ociated with greater impairment across several cognitive domains (including
al anxiety, motor impulsivity, and ADHD symptoms. Error bars indicate boot-
worseoutcomes are colored brown. For example, ADHDsymptoms is colored
rrelations betweenparticipants’RSFCdata and their RSFCcomposite scores.
dwith LC2. (E) Thresholded correlations between participants’RSFCdata and
ckswith significant bootstrappedZ scores are shown (false discovery rateq,

cores, averaged within and between networks with significant bootstrapped Z
ion; Sal/VentAttn, salience/ventral attention; SomMot, somatomotor; SZAD,
n.
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RSFC and behavioral composite scores were higher in pa-
tients with SZ or SZAD than in patients with ADHD or BD,
although this was significant only with respect to patients with
SZ (potentially because of the small number of SZAD partici-
pants) (Figure 3B). Differences remained significant after con-
trolling for medication and substance use (Supplemental
Figure S3). Additional results on medication and substance
use are found in Supplemental Table S5, Supplemental Figures
S4 to S5, and Supplemental Results.

LC3 Reflects Greater Impulsivity

LC3 accounted for 8% of RSFC-behavior covariance
(Supplemental Figure S1), with significant association (r = .73,
p = .011) between RSFC and behavioral composite scores
(Figure 4A). Figure 4C shows that greater behavioral composite
score was associated with greater impulsivity (e.g., functional
and motor impulsivity, novelty seeking) as well as lower con-
trol, harm avoidance, and social anxiety.

Greater RSFC composite score was associated with
increased RSFC within the somatomotor networks (Figure 4D–
F). Somatomotor networks also showed greater RSFC with
visual B, dorsal attention B, and salience A networks and
showed lower RSFC with default A and B networks, control B
network, and subcortical regions (caudate, cerebellum, and
thalamus). Finally, RSFC was also increased between default
(A and B) and control networks.

Patients with ADHD had higher RSFC and behavior com-
posite scores than patients with SZ and had higher behavioral
composite scores than HCs (Figure 4B). However, only the
difference between patients with ADHD and HCs was signifi-
cant after controlling for medication and substance use
(Supplemental Figure S3). Additional results on medication and
substance use are found in Supplemental Table S5,
Supplemental Figures S4 to S7, and Supplemental Results.

Somatomotor Networks Are Transdiagnostic Hubs

Supplemental Figure S8 shows functional connections unique
to each LC obtained by comparing Figures 2E, 3E, and 4E.
Supplemental Table S6 summarizes behavioral measures that
are unique to each LC, or that load on multiple LCs, obtained
by comparing Figures 2C, 3C, and 4C.

To examine functional connections common across LCs,
within-network and between-network blocks with significant
bootstrapped Z scores (Figures 2F, 3F, and 4F) were binarized
=

Figure 4. Third latent component (LC3) reflects impulsivity. (A) Correlation b
behavioral composite scores of participants. Scatterplots for each primary diagnos
obtained by permutation testing. Note that the null distribution is not centered at z
Group differences in RSFC and behavioral composite scores. Asterisks indicate
attention-deficit/hyperactivity disorder (ADHD) had significantly higher RSFC and b
Patients with ADHD also had significantly higher behavioral composite scores com
disorder (SZAD). (C) Top 20 strongest correlations between participants’ behaviora
positively associated with several measures of impulsivity and was negatively as
standard deviations. Behavioral measures for which higher values indicated worse
because higher values indicated greater false alarm rate. (D) Unthresholded corre
showing the connections that contribute most to LC3. Red (or blue) color indica
Thresholded correlations between participants’ RSFC data and their RSFC comp
significant bootstrapped Z scores are shown (false discovery rate q, .05). (F) Cor
averaged within and between networks with significant bootstrapped Z scores. BD
dorsal attention; RT, reaction time; Sal/VentAttn, salience/ventral attention; SomM
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and summed across the first three LCs (Figure 5A). Absolute
correlations within blocks that were significant in all three LCs
(Figures 2E, 3E, and 4E) were summed across the LCs to
obtain the magnitude of correlations common across the LCs
(Figure 5B). Somatomotor networks’ connections appeared
prominently, including connections within the somatomotor
networks as well as somatomotor networks’ connections with
control B, dorsal attention B, and subcortical regions (caudate,
putamen, thalamus, and cerebellum). Finally, Figure 5C shows
the strength of involvement of each ROI obtained by summing
the rows of Figure 5B.

Control and Reliability Analyses

We summarize several analyses that ensured robustness of
the LCs. See Supplemental Results and Supplemental
Tables S8 to S10 for details. First, PLS components esti-
mated from RSFC successfully generalized to task functional
connectivity in the same participants. Second, 5-fold cross-
validation was successful; PLS components estimated from
80% of the participants successfully generalized to the
remaining 20% of participants. Third, the top three principal
components of the behavioral measures were highly correlated
to the behavioral saliences of LCs 1, 2, and 3 (r $ .97), sug-
gesting robustness across analytic approaches. Fourth, PLS
components were robust to non-Gaussian and skewed
behavioral distributions and were not driven by diagnostic
variables. Fifth, instead of regressing age, sex, education, site,
and motion from the data, these variables were added to the
behavioral data for the PLS analysis. The results were largely
unchanged. Sixth, we used CompCor (59) instead of global
signal regression in the rs-fMRI preprocessing. The first three
LCs were largely unchanged, but not the fourth LC. Hence, we
focused on LCs 1, 2, and 3 in this article. To ensure that our
results were not driven by the large number of HCs or by case-
control group differences, PLS was recomputed using only
controls or only patients. In both models, we found moderate
to high correlations with original saliences. Finally, we
recomputed PLS within each site and found moderate to high
correlations with the original saliences.

DISCUSSION

We identified three LCs representing general psychopathol-
ogy, cognitive dysfunction, and impulsivity, which were asso-
ciated with distinct whole-brain RSFC patterns across mental
etween individual-specific resting-state functional connectivity (RSFC) and
tic group are found in Supplemental Figure S11. Inset shows null distribution
ero. The dashed line indicates the actual singular value obtained for LC3. (B)
t tests that survived false discovery rate correction (q , .05). Patients with
ehavioral composite scores compared with patients with schizophrenia (SZ).
pared with healthy control individuals (HC) and patients with schizoaffective
l measures and their behavioral composite scores. Great loading on LC3 was
sociated with harm avoidance and control. Error bars indicate bootstrapped
outcomes are colored brown. For example, false alarm rate is colored brown
lations between participants’ RSFC data and their RSFC composite scores,
tes that greater RSFC is positively (or negatively) associated with LC3. (E)
osite scores, whereby only within-network or between-network blocks with
relations between participants’ RSFC data and their RSFC composite scores,
, bipolar disorder; Control, executive control; Default, default mode; DorsAttn,
ot, somatomotor; TempPar, temporoparietal.
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health and disease. All three components implicated connec-
tivity of the somatomotor network with subcortical and cortical
executive networks. These brain-behavior associations might
index intermediate neurobiological processes and potentially
serve as transdiagnostic phenotypes, providing a more
comprehensive characterization of individuals’ phenotypic
variability.

Somatomotor Networks Are Transdiagnostic Hubs

The implication of the somatomotor network across multiple
dimensions might seem surprising. However, closer inspection
of previous case-control neuroimaging studies suggests that
the somatomotor regions are often reported, but not empha-
sized, within prevailing psychiatric models. For example, altered
RSFCwithin the somatomotor network (21,25,60–62), aswell as
between the somatomotor networks and thalamus (60,63–69),
have been documented in case-control studies investigating
SZ, SZAD, and BD. Altered thalamo-somatomotor RSFC has
also been linked to SZ symptom severity (60,63,64). One recent
study found RSFC involving somatosensory, motor, basal
ganglia, thalamic, and visual regions to be associated with the p
factor (12). Our results extend previous work by showing that
dysconnectivity patterns of these regions are linked to variation
in three domains: general psychopathology, cognitive
dysfunction, and impulsivity.

In addition to dysconnectivity of the somatomotor network,
sensory processing has been found to be disturbed in SZ (70)
and BD (71,72). Moreover, the diagnostic criteria for BD and
ADHD include motor features (73,74). Indeed, motor dysfunc-
tion has been documented in many psychiatric disorders (75),
preceding disease onset and predicting disease progression
(76–78). Because all three LCs in this study featured connec-
tivity between somatomotor and executive networks, these
sensory-motor deficits might arise from impaired top-down
control over lower-level processes. Another possible mecha-
nism is impaired ability to decode information coming from
sensory regions, whereby lower-level sensory deficits may
cascade up the system, undermining higher-order cognitive
functions (70). Overall, our findings suggest that sensory-
motor processes affect symptomatology, cognitive function,
and personality. Investigating these processes in the future
may therefore inform the underlying etiology of various aspects
of psychopathology.
=

Figure 5. Functional connections involved in multiple latent components
(LCs). (A) Within-network and between-network blocks with significant
bootstrapped Z scores (Figures 2F, 3F, and 4F) were binarized and summed
across the first three LCs. Within-network and between-network blocks that
were significant in only one LC were changed to zero. (B) Sum of absolute
correlations within significant within-network and between-network blocks
(Figures 2E, 3E, and 4E). Connections involving the somatosensory-motor
(somatomotor) networks were involved in all three LCs. Furthermore, even
though we did not focus on the fourth LC in this study, somatomotor net-
works’ connections also featured prominently in the fourth LC
(Supplemental Figure S2D–F). (C) Strength of involvement of each region of
interest (ROI) was obtained by summing the rows of panel B and displaying
on a surface map. The strength of involvement of the top 50 ROIs can be
found in Supplemental Table S7. Control, executive control; Default, default
mode; DorsAttn, dorsal attention; RSFC, resting-state functional connec-
tivity; Sal/VentAttn, salience/ventral attention; SomMot, somatomotor;
TempPar, temporoparietal.
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Relations to Other Transdiagnostic Studies

LC1 appeared to reflect the p factor widely discussed in
transdiagnostic cohorts (10–15). On the other hand, LC2
(cognitive dysfunction) and LC3 (impulsivity) have been
featured less frequently and provided further insights into
heterogeneity among individuals.

LC2 captured dysfunction across multiple cognitive do-
mains. Interestingly, HCs had almost no loadings on LC2, which
argues against LC2 representing general intelligence. Instead,
LC2 was largely driven by greater cognitive impairment in pa-
tients with SZ or SZAD compared with HCs and patients with
ADHD or BD. This is consistent with previous studies showing
more severe deficits in patients with SZ or SZAD compared with
other psychiatric groups such as patients with BD (3,79–82).
However, LC2 was not purely cognitive given that it was also
driven by worse symptoms in individuals with ADHD or BD
compared to individuals with SZ or HCs.

Although central to several psychiatric conditions [e.g., ADHD,
substance disorder (83)], impulsivity factors have been reported in
only one recent transdiagnostic studybutwerenot associatedwith
anyRSFCpattern (12). Inourcase, the impulsivitymeasuresdriving
LC3 indexed response inhibition (e.g., false alarm rate), novelty
seeking, and hyperactivity (e.g., energy/activity). This component
differentiated patients with ADHD from HCs, consistent with hy-
peractivity/impulsivity being characteristic of ADHD (73).

Strengths and Limitations

One strength of our study is the use of a whole-brain data-
driven approach and a broad set of behavioral measures. The
components we identified with RSFC generalized well to task
fMRI data and were robust across alternative methodological
strategies. Nonetheless, our work has several limitations. First,
the sample size of each patient group was small. This was not
an issue for the PLS analysis because diagnostic categories
were not used. However, the limited sample sizes do affect
post hoc analyses, for example, when comparing the SZAD
group with other patient groups. Future research involving
larger samples and more diagnostic categories is warranted.
Second, most scales measuring symptom severity were
administered only to patients, which limited the number of
clinical measures that could be used [cf. (17)]. Moreover, while
the cortex was parcellated into functionally defined regions,
the subcortical regions were more coarsely delineated based
on macroanatomy. A finer parcellation might better capture
cortical-subcortical associations. Field maps were not
collected, so distortion correction was not performed.
Furthermore, PLS covariances should not be interpreted as
actual effect sizes, as can be seen by the fact that the null
distributions of singular values were not centered at zero (in-
serts in Figures 2A, 3A, and 4A). Indeed, cross-validated cor-
relations (which are more appropriate measures of the effect
size), while statistically significant, were much lower than PLS
correlations (Supplemental Table S8). Finally, our results might
be affected by the particular combination of psychiatric dis-
orders and behavioral measures available in this dataset.
Future studies will benefit from the increasing availability of
broad phenotypic batteries that assess multiple domains of
behavior, cognition, and genetics (84,85).
Biological Psych
Conclusions

By identifying three components that characterized in-
dividuals’ variability in psychopathology, cognitive impairment,
and impulsivity, our work has allowed highlighting the multi-
faceted role of somatomotor regions along these dimensions.
Our study thus adds further evidence to the benefits of
including a broad range of behavioral measures to capture
brain-behavior associations across psychiatric boundaries.
Identifying such transdiagnostic associations might help to
uncover common neurobiological mechanisms and explain
high comorbidity rates in psychiatry. Code for this work can be
found here: https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/disorder_subtypes/Kebets2019_Trans
diagnosticComponents.
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